
© Copyright 2000 J.R. Frost, All Rights Reserved 



© Copyright 2000 J.R. Frost 

Principles of Search Theory

Part I: Detection


by J. R. Frost 

Introduction 
This is the first in a series of four articles that, as a group, 

attempts to present the fundamental principles of search 
theory in layman’s terms (parts I and II appear in this issue; 
parts III and IV will appear in the next issue of Response). 
Collectively, these articles are intended to ground the reader 
in some of the basic principles and terminology of search 
theory in an easy-to-understand manner. While these arti­
cles may include some comments on how aspects of search 
theory relate to SAR, practical application (such as specific 
search procedures based on the theory) is beyond the scope 
of this particular series. Before we can begin, however, we 
must lay down some ground rules, express some caveats, and 
make some disclaimers. 

The principles of search theory described in this series of 
articles have been established by the scientific community 
over the last 50 years, and may be found in various univer­
sity-level textbooks and in scientific journals. Unfortunately, 
these sources express the principles of search theory in the 
language of higher mathematics, making them all but 
unreadable for nonmathematicians. The objective of these 
articles is to remove this impediment to understanding the 
basic concepts of search theory by translating the mathe­
matics into analogies that are easier to grasp. 

Most of the terms used in this series of articles are taken 
from either the scientific search theory literature itself or the 
U.S. National Search and Rescue Manual. (Where there is 
overlap, these two sources are consistent.) Terminology is 
important for understanding search theory’s basic principles. 
However, many terms used herein have also been used else­
where with different, and sometimes vague or even contra­
dictory, meanings. Therefore, to gain a full appreciation of 
the material being presented, the reader may need to set aside 
familiar concepts and definitions from other informal dis­
cussions of “search theory.” 

Although the author has striven for clarity and simplic­
ity, it should be no surprise if several careful re-readings and 
some computation are necessary to grasp the concepts 
involved. Search theory is not simple and intuitive; many of 
its concepts are difficult to understand after only an initial 
exposure. Readers who have been exposed to other treat­
ments of this subject that may not have adhered as strictly 
to precise terminology or the underlying scientific research 
are likely to have the most difficulty. 

Finally, the principles of search theory represented here 
are not the opinions (or theories) of this author. The author’s 
role is merely that of translator and messenger. Some readers 

may see challenges to cherished concepts that have come to 
be accepted as “conventional wisdom.” Addressing these sit­
uations would require far more than the available space. 
With this in mind, comparisons with other informal descrip­
tions of “search theory” will be deliberately avoided and we 
will confine ourselves to what may be obtained from the 
scientific literature. 

History 
The theory of how to search for lost, missing, hidden and 

even evasive objects has been a subject of serious scientific 
research for more than 50 years. It is a branch of the broader 
applied science known as operations research. The term 
operations research can be traced to work done during World 
War II in support of the war effort. At that time, operations 
research was an apt title since the objective was to find the 
most efficient and effective ways for conducting military 
operations. During the war, one important type of military 
operation was, in fact, searching. Searches were conducted 
to locate the enemy, and to locate and recover one’s own 
lost or missing personnel or those of one’s allies. In more 
recent years, the principles of operations research have been 
applied to a wide variety of problems that involve making 
good decisions in the face of uncertainty about many of the 
variables involved. These problems often do not involve 
“operations” in the classical sense, and so the term opera­
tions research has become an anachronism to some extent. 
However, the original meaning is very close to the subject 
we want to discuss—namely, effective, efficient ways of 
searching for lost or missing persons. 

B.O. Koopman1,2 did the initial work on search theory 
during World War II for the U. S. Navy. The Navy’s primary 
search objects were enemy ships and submarines, and its 
own downed fliers adrift on the ocean. Koopman had to first 
develop the general principles of search theory before he 
could get down to the specifics of naval problems. These 
fundamental principles, which apply to all types of searches 
for lost or missing objects, are the principles we will be dis­
cussing. 

A Search Analogy 
To avoid descending too deeply into the pit of mathemat­

ics, we will need to discuss a common, easily visualized 
activity that can be used as a model, or analogy, for search­
ing. So, let us pick the mundane activity of sweeping floors 
as an analogy for “sweeping” an area in search of a lost or 
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missing person. We will use this analogy to describe hypo­
thetical experiments that illustrate the basic principles of 
search theory. 

Suppose we wish to compare the performance of four dif­
ferent push broom designs. In the first design, the broom 
head is one-half meter (50 cm) in width and has fine, closely-
set bristles. In the second design, the broom head is a full 
meter in width but the bristles are more coarse and not as 
dense as with the first broom. The third broom is two meters 
in width with bristles that are even coarser and less dense 
than those of the second design. The fourth broom is again 
one meter in width, but it is a hybrid design where the cen­
ter 20 cm is identical to the first broom, the 20 cm sections to 
the right and left of the center section are identical to the 
second broom, and the outboard 20 cm sections at each end 
are identical to the third design. Figure 1 shows a schematic 
representation of the four different designs. We construct 
the brooms and label them as B1, B2, B3, and B4, respec­
tively. 

In our first experiment, we want to know how the brooms 
compare to one another on a single sweep through a previ­
ously unswept area. To perform this test, we choose a smooth 
floor and mark off a square test area measuring 10 meters 
on a side. Using sand to simulate dirt on the floor, we cover 
the test area lightly, and uniformly, so that the “density” of 
sand is 10 grams per square meter (g/m2) of floor surface. We 
then push each broom in a straight line from one side of the 
test area to the other at a constant speed of 0.5 m/sec (1.8 
km/hr or a little over 1 mph), collect the sand that was swept 
up, and weigh it. 

When B1 is pushed through the test area, it appears to do 
a very good job. In fact, it makes a “clean sweep” with a 
width of 0.5 meters (the width of the broom head), as illus­
trated in Figure 2. It swept up 50 grams of sand—all the sand 
within the 0.5 m x 10 m swept area. Thus we may say that B1 
is 100% effective out to a distance of 25 cm either side of 
the center of its track, and, because of the physical limita-
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tion of the broom’s width, it is completely ineffective at 
greater distances. The maximum lateral (side-to-side) range 
of the broom is 0.25 meters from the center of its track. 
Finally, since it took 20 seconds to traverse the 10-meter 
“test course,” B1 swept up the sand at the average rate of 
2.5 grams per second. 

Broom B2 is not as thorough as B1, but it makes a swath 
twice as wide as illustrated in Figure 3. When the sand from 
B2 is weighed, it turns out that it too swept up 50 grams of 
sand. As a quick calculation will show, B2 swept up 50% of 
the sand in the one-meter-wide swath it made. Further analy­
sis shows that all parts of the broom performed equally, and 
both the sand swept up and that left on the floor were uni­
formly distributed across the width of the swath. Thus B2 is 
50% effective out to a distance of 0.5 meters on either side of 
the center of its track, and completely ineffective beyond that 
distance. The maximum lateral range of B2 is 0.5 meters 
from the center of its track. Just as with B1, broom B2 swept 
up the sand at the average rate of 2.5 grams per second. 

Broom B3 is even less thorough than B2, but it makes a 
swath twice as wide as B2 and four times as wide as B1, as 
shown in Figure 4. Furthermore, it too sweeps up 50 grams 
of sand and is found to be uniformly 25% effective over the 
two-meter swath it makes. The maximum lateral range is one 
meter either side of track and it swept up sand at the same 
rate of 2.5 grams per second. 

Finally we push B4 through an unswept portion of the test 
area. When the sand from B4 is weighed, again we find we 
have 50 grams! More detailed analysis shows the center sec­
tion made a clean sweep 20 cm wide, getting 20 grams of 
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Performance Profile for B1 

Performance Profile for B3 

Figure 6 

sand in the process. The two adjacent 20-cm sections swept 
up 10 grams of sand each for another 20 grams. This 
amounts to 50% of the sand present in the two corresponding 
20-cm strips on the floor. Finally, the two outboard 20-cm 
sections got only 5 grams of sand each, which means they 
were only 25% effective in their respective strips. Figure 5 
illustrates the uneven performance of broom B4. 

Based on the physical size of B4, the maximum lateral 
range of B4 is 0.5 meters from the center of its track. Finally, 
just as with the other brooms, B4 swept up the sand at the 
average rate of 2.5 grams per second. 

If we graph each broom’s performance profile as the pro
portion of dirt (pod) lying in the broom’s path that is swept 
up across the width of the broom head as it moves forward, 
we get the graphs shown in Figure 6. 

When looking at how the four brooms performed, we see 
that all four swept up the same amount of sand at the same 
rate under the conditions of our experiment, even if each 
broom did so in a different way. How can we characterize 
their “equivalent” performance? Note that the amount of 
sand swept up by each broom (50g) is exactly the amount 
found in a strip 50 cm wide and 10 m long. In fact, it is easy 
to show that no matter how far each broom is pushed under 
these same conditions, it will sweep up the amount of sand 
found in a strip 50 cm wide over the length of the broom’s 
movement. That is, we can say the effective sweep width of 
each broom when moving at 0.5 m/sec, for the purposes of 
computing the amount of sand swept up, is 50 cm (or 0.5 
m). If we convert the percentages on the vertical axes of 
Figure 6 to decimal values (e.g., 100% = 1.0), the amount 
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Performance Profile for B2 

Performance Profile for B4 

of area “under the curve” (the shaded areas in the figure) is 
exactly equal to the effective sweep width in each case. As 
we shall see, this is not a mere coincidence. The results of 
our experiments and some values of interest that may be 
computed from them are shown in the table below. Although 
the utility of some of the computed values may not be imme­
diately apparent, their usefulness will become clear in the 
subsequent parts of this series. 

The results tabulated below are valid only for situations 
that are exactly like our experiment. If we change the speed 
at which the brooms are pushed, use another surface (e.g., 
the asphalt in the parking lot), or use BBs instead of sand, we 
may or may not get the amount of sand (or BBs) found in a 
50 cm swath along the tracks. Likewise, the four brooms 
may or may not continue to perform “equivalently” with 
respect to one another. We need a more general definition of 
effective sweep width for it to be useful. 

We may define effective sweep width of a broom moving 
over the floor at a certain speed as the ratio of the amount of 
material swept up per unit time to the product of the density 
(amount per unit area) of material covering the floor and the 
broom’s rate of travel. This definition is easier to grasp when 
written as an equation: 

Effective Sweep Width = Amount of Material Swept Up Per Unit Time 
[(Amount of Material Per Unit Area) 

x (Broom Speed)] 

The term amount of material could mean any quantitative 
measure of the material, including grams of sand (as in our 
experiment), number of objects (such as number of BBs), 
volume of a liquid (e.g., for sponge mop evaluation), etc. 

3 



___________________________________________ 

_______________________________________ 

_______________________________________ 

© Copyright 2000 J.R. Frost 

and the actual detection profile
Broom B1 Broom B2 Broom B3 Broom B4 both detect, on average, the

Broom Width 0.5 m 1.0 m 2.0 m 1.0 m same number of objects per unit 
Maximum Lateral Range 0.25 m 0.5 m 1.0 m 0.5 m time under the same conditions 
Bristle Density Composite of object density and searcher 

50% speed. 
Demse Less dense Much less dense 

Broom Effectiveness (avg.) 100% 50% 25% 
Sand “Density” 10 g/m2 10 g/m2 10 g/m2 10 g/m2 

Some Sweeeep Width Examples
Sweeping Speed 0.5 m/sec 0.5 m/sec 0.5 m/sec 0.5 m/sec 

20 sec To see how Equation [1] 
works, suppose we devise an 

Time 20 sec 20 sec 20 sec 
Distance Moved 10 m 10 m 10 m 10 m 

experiment where a large num-
Area Swept 0.5 m x 10 m 1.0 m x 10 m 2.0 m x 10 m 1.0 m x 10 m ber of identical cardboard dum-
Amount of Sand Swept Up 50 g 50 g 50 g 50 g mies, having about the same 
Average Sand Removal Rate 2.5 g/sec 2.5 g/sec 2.5 g/sec 2.5 g/sec size, shape and color of a lost 
Effective Sweep Width 0.5 m person, are uniformly, but ran­0.5 m 0.5 m 0.5 m 

0.5 m x 10 m domly, distributed over a squareArea Effectively Swept 0.5 m x 10 m 0.5 m x 10 m 0.5 m x 10 m 
test area in measuring one mileEffective Sweep Rate 0.25 m2/sec 0.25 m2/sec 0.25 m2/sec 0.25 m2/sec 

Also note that we are using “effectiveness” to mean “has 
the same effect as” according to some agreed-upon mea­
surement (grams of sand swept up, in this case). We could 
have used the word “equivalent” in place of the word “effec­
tive” whose usage here is taken directly from the scientific 
literature. Readers are invited to substitute “equivalent” for 
“effective” if it makes the articles in this series easier to 
understand. The important thing to note is that the modifier 
“effective,” as used here does not imply a broom is only, or 
even highly, effective over a swath having a physical width 
equal to the effective sweep width. When we say that all four 
brooms have an effective sweep width of 50 cm, we are say­
ing that all four sweep up the amount of sand found on the 
floor in a swath 50 cm wide. Only broom B1 does this in a 
literal sense. All of the others sweep up the same amount of 
sand in one pass, but each removes the sand in its own way 
from a wider swath. 

Effeecctivee Seeaarcch (oor Sweeeep) Width (W) 

In his groundbreaking work on search theory, Koopman1 

defined the effective search (or sweep) width (often short­
ened to just sweep width) as follows: If a searcher passes 
through a swarm of identical stationary objects uniformly 
distributed over a large area, then the effective search (or 
sweep) width, W, is defined by the equation, 

Number of Objects Detected Per Unit Time
[1] W =(Number of Objects Per Unit Area) x (Searcher Speed) 

where all values are averages over a statistically significant 
sampling period. If the performance (or detection) profile 
(called a lateral range curve in search theory) is known for 
a certain search situation, then the area under the detection 
profile equals the sweep width, W, for that situation. This 
effective sweep width is also twice the maximum detection 
range of an “equivalent”definite range detection profile (one 
that is 100% effective out to some definite lateral range 
either side of its track and completely ineffective beyond that 
range, like broom B1 in our floor-sweeping analogy). Here, 
“equivalent” means that the definite range detection profile 

on a side. (A uniform random 
distribution is one where the 

exact locations of the objects are chosen at random, but the 
number of objects per unit of area is about the same through­
out the test area.) Since our test area is in hilly, forested ter­
rain, we use a total of 1920 cardboard dummies for a density 
of 1920 objects per square mile. On average, that is 3 objects 
per acre or one object for every square patch of ground mea­
suring 120.5 feet on a side. Now suppose we have several 
searchers each make a single straight pass through the test 
area and find that their average speed is 0.4 miles per hour 
with an average detection rate per searcher of 12.8 objects 
per hour. Using Equation [1], 

12.8 objects per hour
W = = 0.0167 miles1920 objects per square mile x 0.4 miles per hour 

The sweep width is 0.0167 mile or about 88 feet for this 
particular search situation. 

Suppose we conduct a similar experiment with several 
aircraft, each flying over the same area one time in a straight 
line at 100 miles per hour (about 90 knots). Suppose the 
average detection rate from the aircraft is 13.3 objects per 
minute. That converts to 800 objects per hour. (Note: At 100 
mph, each aircraft spent only 36 seconds crossing over our 
square test area and detected 8 objects on average.) Using 
Equation [1], 

800 objects per hour
W = = 0.0042 miles1920 objects per square mile x 100 miles per hour 

We find the sweep width for this situation is 0.0042 mile 
or about 22 feet. Note that despite the very high detection 
rate achieved by the aircraft due to their high rate of speed, 
the smaller sweep width we have computed indicates the 
cardboard dummies are significantly more difficult to detect 
from the air than from the ground. In fact, they are about four 
times as hard to detect from the air as from the ground. In 
some environments, detection from the air is so difficult that 
air search is considered ineffective. Nevertheless, since an 
aircraft can search an area several times in less time than it 
takes for a ground team to search the same area once, some­
times the handicap of a small sweep width may be more than 
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offset. (We will revisit this issue in Part II when we discuss 
something called coverage.) For many environments, it is 
not at all unusual for objects the size of a person to be much, 
much harder to detect from a light fixed wing aircraft flying 
a several hundred feet above the ground at 100 miles per 
hour than from the ground while walking at less than one-
half mile per hour. On the other hand, sweep widths for air­
craft operating over relatively flat, open terrain can be 
significantly larger than those for searchers on the ground 
when both are looking for the same object. 

Note: The “experiments” and figures described above 
are completely hypothetical and are presented only for con
ceptual illustration. There is a great deal more involved in 
designing and conducting scientifically rigorous experi
ments, and collecting and analyzing the data from them, than 
the above paragraphs convey. 

Importance of Sweeeep Width 
As the reader may have already discerned, sweep width 

is a basic, objective, quantitative measure of detectability. 
Larger sweep widths are associated with situations where 
detection is easier while smaller sweep widths imply detec­
tion is more difficult. It should be clear that it must be impor­
tant to know, in some quantitative way, how detectable the 
search object is in a particular search situation if we are to 
reliably estimate the probability of detecting that object with 
a given amount of searching. 

The sweep width concept is extremely robust. It has stood 
the test of time and a great deal of scientific scrutiny. An 
important property of sweep width is its relative indepen­
dence from the details of the detection processes themselves, 
such as the exact shape of the detection profile, or 
exactly how the searcher’s eyes and brain func-

Factors Affecting Sweeeep Width 
There are three classes of factors that affect detection and 

hence the sweep width. 
1. The search object’s characteristics affecting detection. 

Examples include such things as the object’s size, color, 
contrast with surroundings, etc. One would not expect the 
sweep width for a discarded candy wrapper or a footprint 
in the summer forest to be nearly as large as that of a per­
son wearing bright clothing. 

2. The capabilities of the sensor(s) in use. Examples include 
sensor type (e.g., unaided human eye, infrared devices, 
air-scent dog, etc.), searcher/operator abilities (e.g., train­
ing, experience, fatigue), search platform (searcher on 
foot, all-terrain vehicle, boat, aircraft, etc.), speed of the 
searcher’s movement in relation to the search object, etc. 

3. The environmental conditions at the place and time of the 
search. Examples include terrain, amount of ground cover, 
lighting conditions (e.g., sunny vs. overcast, deep forest 
vs. open meadow), visibility/weather (e.g., clear, foggy, 
rainy), etc. 

All of these factors may interact with one another in com­
plex ways. This leads to the single most important difficulty 
of the sweep width concept—there is no simple, easy way 
to directly measure effective sweep width in the field for each 
search situation. However, it can be estimated from factors 
that may be measured, or at least observed, directly. With the 
help of data from some scientifically designed and executed 
experiments covering a reasonably broad range of search sit­
uations, effective sweep width values can be estimated 
quickly and reliably based on the sensor(s) in use, the char­

acteristics of the search object(s) and the environ­

tion to see and recognize the search object. Sweep The concept mental conditions in the search area(s). Note that 
although the maximum detection range is both

width is simply a measure (or estimate) of the of effective measurable and affected by many of the same fac­
average detection potential of a single specific tors, this value alone does not reliably indicate 
“resource” (e.g., a person on the ground, an air- sweep width how much detection will take place, whereas the 
craft or vessel and its crew, etc.) while seeking a effective sweep width does. Even when we know 
particular search object in a particular environ- is extremely the maximum detection range, all we can say with 
ment. Thus, Equation [1] may be applied to any powerful and certainty is that the sweep width can never be 
sensor looking for any object under any set of lies at the greater than twice its value. 
conditions. For visual search, note that Equation 
[1] will work for either relatively unobstructed very core of The Coast Guard’s Experience 
views, such as searches conducted from aircraft For more than 20 years, the U.S. Coast Guard
over the ocean, or situations where obstructions search theory. has been conducting scientific experiments and
are common, such as searching in or over forests. 
That is, Equation [1] may be applied to any SAR 
search situation, although it makes more sense to apply it to 
situations where conditions are roughly uniform. Where 
there is a significant difference in environmental conditions 
(e.g., open fields vs. forests), sensor/searcher performance 
(e.g., experienced vs. inexperienced searchers) and/or search 
objects (e.g., a person vs. “clues” like footprints or discarded 
objects), there will normally be a significant difference in 
effective sweep width as well. 

analyses to develop tables of validated effective 
sweep width values for use in marine SAR. These 

experiments first identify the significant factors affecting 
detection and then go on to quantify the effects of the iden­
tified factors. It does not appear that any experiments of a 
similar sophistication or scope have been undertaken for the 
benefit of inland SAR. Coast Guard experience has shown 
that relatively few (but expensive, unfortunately) experi­
ments, covering a representative cross-section of conditions 
typically encountered in SAR missions, produces useful 
results across a wide spectrum of SAR situations. 
Consequently, the National SAR Manual3 contains extensive 
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Figure 7 

tables of sweep width values for a wide range of conditions 
encountered in marine SAR. From these, good estimates of 
effective sweep widths for marine situations other than those 
directly tabulated may be obtained quickly and easily by 
using correction factors, interpolation, limited extrapola­
tion, etc. Maritime search planners the world over use these 
tables to good effect every day. Coast Guard experience has 
also shown the need for a significant level of continuing 
experimentation to keep pace with changing technology— 
both that which a distressed person might use and that which 
becomes available to the searchers. 

Koopman’s Model of Visual Detection 
We will conclude our discussions with a brief look at a 

mathematical model of visual detection developed by 
Koopman during his initial work on search theory. This 
model is important for both historical reasons and because 
it is still used today in a SAR context. 

Koopman had no empirical data, such as the results of 
controlled experiments, from which he could develop detec
tion profiles. Since the primary objective of his research 
involved detection of enemy ships and surfaced submarines 
from patrol aircraft flying over open ocean, he analyzed the 
geometry of this situation and made two reasonable assump­
tions. The first assumption was that an observer in an aircraft 
first detects a vessel by sighting its wake. The second 
assumption was that the instantaneous (one glimpse) proba­
bility of detecting the vessel is proportional to the solid angle 
(like that at the apex of a pyramid) subtended at the 
observer’s eye by the wake’s area. Working through the 
geometry and associated mathematics, this is approximately 
equivalent to saying the instantaneous detection probability 
is inversely proportional to the cube of the distance from 
the observer to the ship’s wake. Hence, this model came to 
be called the inverse cube law of visual detection. 
Continuing to develop this model, Koopman found that it 
produced a particular type of bell-shaped detection profile, 
shown in Figure 7. 

Unfortunately, we will not be able to fully appreciate the 
importance of Koopman’s model until near the end of Part II. 
However, it seemed most appropriate to introduce its detec­
tion profile here first. 

Sweeeep Width and Speeeed 
There is one important observation, however, that 

Koopman’s notion of “glimpses” will help us understand 
before we move on from effective sweep width to the next 
topic. For visual search, the sweep width decreases as the 
speed of the searcher in relation to the search object 
increases. Using Koopman’s approach, we can see at least 
one reason why this should be true. A searcher “glimpse 
rate,” or number of glimpses per minute, is roughly constant. 
As his speed increases, the searcher has to scan more area 
with the same number of glimpses. This gives him less time 
to focus on each small patch of ground and decide whether 
the search object is there. Similarly, he has fewer opportuni­
ties to catch a glimpse of, and detect, a search object as he 
passes by. As Hill4 and many others have stated, seeing and 
detecting are not the same thing. Koopman1,2 observed, “. . 
. the act of [the search object’s] recognition is essential: what 
the searcher perceives is a set of sensory impressions which 
he must interpret before he knows what is causing them. 
When the object is in plain view, its recognition is so imme­
diate that this may hardly seem to take place; but in the typ­
ical problems of search, recognition can easily be a matter 
of real difficulty.” In his presentation, Hill4 dramatically 
demonstrated, with photographic slides taken in a wooded 
area, just how difficult recognition can be. It takes a small, 
but finite, amount of time for a searcher to move his gaze to 
a new patch of ground (or water), focus on it, give himself 
enough time to recognize objects of interest if any are pre­
sent, decide whether there are any such objects present, and 
move his gaze to a new patch. The faster a searcher moves, 
the more likely it becomes that he will fail to detect objects 
of interest even when they are present, and the more likely 
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it becomes that he will fail to even look at some patches of 
ground. 

Increased speed can also produce other effects. To give an 
extreme example, consider how many objects a searcher 
would detect while running through a wooded test area hav­
ing no trails to follow. The running searcher would have vir­
tually all of his attention devoted to the problems of 
navigating the terrain at such a high speed. By concentrat­
ing on obstacle avoidance, as he must, such a searcher is 
unlikely to detect any but the closest and most obvious 
objects, making the number of detections per unit time quite 
low in comparison to his speed. In terms of Equation [1], 
the number of objects detected per unit time in the numerator 
would not be large enough to offset the large searcher speed 
in the denominator. If, as in paragraph 5, a searcher moving 
at 0.4 miles per hour detects 12.8 objects per hour, then a 
searcher running at 4 miles per hour would have to detect 
128 objects per hour in order to maintain a computed sweep 
width of 88 feet. 

The generalization that increased speed results in 
decreased sweep width does not necessarily hold when com­
paring two very different resources. For example, the advan­
tages of a “bird’s-eye view” from an aircraft will often more 
than compensate for the detrimental effects of its high speed 
as compared to that of searchers on the ground. If the sweep 
width from the air is equal to or greater than that for 
searchers on the ground, the aircraft’s speed becomes a huge 
asset instead of a liability because it can do much more 
searching in much less time than ground teams can. 
Nevertheless, increasing the aircraft’s speed (e.g., doubling it 
from 100 knots to 200 knots) will have a detrimental effect 
on sweep width. Searching aircraft fly low and slow for the 
very good reason that it makes the search object below more 
detectable than it would be from higher altitudes and/or 
speeds. 

Many important factors, such as search platform capabil­
ities, nature of the terrain, searcher safety and fatigue, go into 
determining what search speed is appropriate. As a result, 
sweep width experiments are normally conducted using 
search speeds that seem to provide the best balance among 
the competing demands. Furthermore, the sweep widths so 
obtained are always used with their corresponding search 
speeds for both planning and operations. We will continue 
the practice of treating sweep width and search speed as an 
inseparable pair of values throughout the remainder of this 
series. In fact, we will combine these two quantities in Parts 
III and IV into a single variable called the effective search (or 
sweep) rate. 

Coming Attractions 
In the next article, we will see how the effective sweep 

width concept allows us to develop an objective relation­

ship among the amount of effort expended in searching an 
area , the size of the area, and the probability of detecting 
(POD) the search object if it is present in the searched area. 
(In fact, objective POD estimates are just not possible with­
out a basic measure of detectability, i.e., the effective sweep 
width.) In the third article we will look at means for con­
structing probability density distributions that quantify the 
search manager’s estimate of where the search object is more 
likely and less likely to be. This will allow the probability 
of the object being contained within a defined geographic 
area (POA or POC according to individual preference) to be 
computed. In the fourth and final article we will see how 
the objective relationship among POD, effort and area can 
be applied to probability density distributions to produce 
optimal search plans that maximize the probability of suc
cess (POS) obtainable with the effort available. 

Food for thought until next time: When we look at how 
our four broom designs perform when they are used to sweep 
four identical test areas, will they all still produce the same 
results for the same effort? Do not jump to any conclusions! 
The answer(s) may come as a surprise! 
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Principles of Search Theory

Part II: Effort, Coverage, and POD


by J. R. Frost 

Sweeping Areas 
In Part I: Detection we established the concept of effective 

sweep width (usually shortened to just sweep width) by using 
floor sweeping as an analogy for searching. We then found 
that sweep width, W, is used in search theory as a standard 
method for expressing detectability. In this article, we will 
first develop a definition for effort. Combining this definition 
with sweep width, we will define the amount of area effec
tively swept (called effective search effort in a SAR context). 
Next, we will see how to relate the area effectively swept to 
the actual physical size of the area being swept using a value 
called effective coverage. Effective coverage will represent 
the degree of “thoroughness“ with which an area has been 
swept. We will then see how effective coverage may be used 
to determine what fraction of the material present in the area 
is swept up. In our floor sweeping analogy, this fraction will 
be represented as the percentage of dirt (pod) originally pre­
sent that is swept up, although we are using sand as a sub­
stitute for dirt in our experiments. Finally, we will provide an 
example showing how these concepts are used to estimate 
Probability of Detection (POD). An underlying assumption 
in all that follows is that effort is applied as uniformly as pos­
sible over the entire test area and is not confined to a single, 
small, portion. We also define a broom’s track as the line fol­
lowed by the center of the broom head and the track spac­
ing in a pattern of parallel sweeps as the distance between 
adjacent tracks. 

Effort 

In the floor sweeping experiments described in Part I, we 
covered a 10 meter square area uniformly with sand at a 
“density” of 10 grams per square meter. Then, we pushed 
each of four different brooms (B1, B2, B3 and B4), across 
the width of the square, recorded how much sand each swept 
up and analyzed each broom’s performance profile. Pushing 
a broom a distance of 10 meters represents a certain amount 
of effort. In fact, effort is defined as the distance traversed 
within the area of interest. Effort may be equivalently 
defined as the amount of time spent in the area of interest 
times the average speed of the broom. If multiple brooms are 
used simultaneously, then the effort will be multiplied 
accordingly. 

[2] Effort = Distance Traversed in the Area, 
or, equivalently, 

[3] Effort = (Time in the Area) x (Average Speed). 

It should be easy to see that the amount of sand swept up 
depends on the amount of effort expended. The farther a 
broom moves, the greater the amount of sand we expect to 
sweep up. Effort has units of length (e.g., meters). Note that 
this is different from the more usual purely time-based defi­
nition used in the work place (i.e., labor hours), although 
the time-based definition is a component of search theory’s 
effort. 

Area Effectively Swept 
Just knowing how far a broom moved (i.e., the effort) in 

an experiment will not tell us how much floor sweeping was 
effectively done. However, if we also know the effective 
sweep width of the broom, then we can compute the amount 
of area that was effectively swept. This computation simply 
requires multiplying the effective sweep width by the effort 
(i.e., the distance the broom moved). 
[4] Area Effectively Swept = Effort x (Effective Sweep Width). 

Provided no portions of the area are swept more than 
once, we can quickly compute the amount of sand swept up 
by multiplying the area effectively swept by the density (in 
grams per square meter) of sand on the floor. We will 
momentarily defer the important issues raised when the 
broom passes over parts of the floor more than once. 

Effective Coverage 
Effective coverage (usually shortened to just coverage) 

is defined as the ratio of the amount of area effectively swept 
to the actual physical size of the area where the sweeping 
was done. 

Area Effectively Swept[5]	 Coverage = Physical Size of the Area 
Where Sweeping was Done 

Thus, if the area effectively swept, computed using 
Equation [4] above, is one half the actual physical area 
involved, then the coverage is said to be 0.5. One can think 
of coverage as a measure of how “thoroughly” the floor has 
been swept. Note that for a given sweep width, the coverage 
is proportional to the area effectively swept, which in turn is 
proportional to the level of effort. How much sand is swept 
up, as we shall see, may also depend on the broom perfor
mance profile, or it may not, depending on the coverage 
and/or exactly how the broom is used. Coverage is the ratio 
of two areas and therefore has no units. 
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Parallel Sweeps 
Most people given the job of sweeping a square area with 

a push broom would elect to do so using a pattern of paral­
lel sweeps. When the sand is uniformly distributed over an 
open floor’s area, this technique is the most efficient method. 
We will now describe a series of experiments using parallel 
sweeps with each of the brooms to see what we can learn. 
But first let us re-state the initial conditions: We have a 
square test area measuring 10 meters on a side for a total area 
of 100 square meters, and the sand is distributed uniformly 
over the area at a “density” of 10 grams per square meter 
making the total amount of sand in the test area 1,000 grams 
(1 kilogram). 

Parallel Sweeps with Broom B1 
Recall from Part I that B1 is 100% effective over a width 

of 50 cm and completely ineffective outside that width. 
Suppose we expend an effort of 50 m (or 100 seconds at 0.5 
m/s) inside the test area. To satisfy our assumption of uni­
formly applying the effort to the degree possible, we divide 
the area into five strips, each two meters wide. We then push 
B1 down the center of each strip, as shown in Figure 8. (Note 
that when sweeping the rightmost and leftmost strips, the 
center of the broom will follow a track one meter from the 
nearest edge of the test area, while the spacing between 
broom tracks will be two meters. This is the standard method 
used in parallel track searches of rectangular areas.) 

B1, C=0.25 

Figure 8 

The physical area swept and the area effectively swept are 
both 25 square meters (50 m times 0.5 m), making the cov­
erage 0.25 (25 m2/100 m2). The amount of sand swept up is 
250 grams or 25% of the total in the area. Hence the frac­
tion of the sand swept up is exactly equal to the coverage in 
this case. It is easy to see that if we divide identical “virgin” 
test areas into more strips and push B1 down the center of 
each, the equality between the fraction of sand swept up and 
coverage will continue until we reach a coverage of 1.0. At 
that point, we will have divided the area into 20 strips having 
a width of 0.5 m each. After sweeping each of these strips, 
broom B1 will have swept up all of the sand (100%). Any 

further sweeping, i.e., any coverage greater than 1.0, would 
be pointless since it would not improve the results. 

Before proceeding further, we need to make a few obser­
vations. Even though our first experiment involved five 
equally spaced parallel broom tracks, we could have 
achieved the same result using any non-overlapping sweeps 
as long as a total distance of 50 m is swept. Provided the 
broom remains within the test area and the sweeps do not 
overlap, the spacing between the broom tracks is irrelevant. 
The point to remember is that the fraction of sand swept up 
depends on coverage, not on track spacing. Also observe that 
we have the advantages of an open floor free of obstructions, 
precise navigation, and the ability to see exactly where we’ve 
already swept. Presently, we will investigate more realistic 
situations where we do not have these advantages. 

Parallel Sweeps with Broom B2 

Recall that broom B2 was uniformly 50% effective across 
a width of one meter and completely ineffective outside that 
width. Pushing B2 down the centers of each of five strips 
two meters in width produces the effect illustrated in 
Figure 9. 

B2, C=0.25 1 m 
➷ 

2 m 

Figure 9 

Although B2 passed over 50 square meters of physical 
floor area, the area effectively swept will still be 25 square 
meters because the effective sweep width is still 0.5 m and the 
effort is still 50 m. Hence, we will again have a coverage of 
0.25 and we will again collect 250 grams of sand or 25% of 
the total in the area. It is easy to see that if we divide identi­
cal “virgin” test areas into more strips and push B2 down 
the center of each, this equality between the fraction of the 
sand swept up and the coverage will continue until we have 
divided the area into 10 strips, each one meter wide. At this 
point, broom B2 will pass over every point in the test area 
once but will achieve a coverage of only 0.5. To reach a cov
erage of 1.0 using parallel sweeps, we must move B2 a total 
distance of 200 meters along tracks that are only 50 cm apart, 
just as we did with B1. Because B2 is twice as wide as B1, 
it will pass over each part of the test area twice at this cov
erage. Since B2 removes 50% of the remaining sand with 
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each pass, it will remove 75% of the sand from the test area 
at a coverage of 1.0. 

We should pause again to make a few observations. The 
most striking of these is the difference in performance 
between brooms B1 and B2 at higher coverages. While both 
brooms achieve identical results for coverages at or below 
0.5, the performance of B2 at higher coverages falls farther 
and farther behind that of B1 up to a coverage of 1.0. At that 
point, B1’s performance reaches the maximum possible 
value (100%), and since it can go no higher, broom B2 
begins to catch up. At a coverage of 2.0 using a standard par­
allel track search pattern, B2 will sweep over the test area 
four times and will sweep up 93.75% of the sand in the area. 
For ease of comparison, the percentage of dirt swept up by 
each broom versus coverage will be graphed after we have 
examined brooms B3 and B4. 

Parallel Sweeps with Broom B3 
Recall that broom B3 is two meters wide but only 25% 

effective over that width. When it is pushed down the centers 
of five “virgin” two-meter strips, a coverage of 0.25 is again 
achieved and 25% of the sand present in the area is swept up. 
However, B3 has also passed over the entire area of 100 
square meters once, as illustrated in Figure 10. 

At a coverage of 0.5, it will pass over the area twice and 
will sweep up 43.75% of the sand. At a coverage of 1.0, 
about 68% of the sand will be swept up. 

B3, C=0.25 

2m 

Figure 10 

Parallel Sweeps with Broom B4 
Recall the hybrid design and “stair-step”performance pro­

file of broom B4 over its one-meter width. Figure 11 illus­
trates sweeping the area with B4 using a coverage of 0.25. 

Like B1 and B2, the fraction of sand swept up by B4 
equals the coverage up to a coverage of 0.5. However, at 
higher coverages, broom B4 outperforms B2, but does not 
do as well as broom B1. At a coverage of 1.0, broom B4 
sweeps up about 80% of the sand in the test area. 

B4, C=0.25 

2m 

Figure 11 

Graphing the Experimental Results 
Figure 12 graphs each broom’s performance when used to 

sweep the test area with equally spaced parallel sweeps. On 
this graph, the percentage of dirt (pod) swept up is plotted on 
the vertical axis against coverage on the horizontal axis. 

The significance of the fifth, and lowest, curve is dis­
cussed below. 

Randomizing Influences 

Random variations are a fact of life in our activities and in 
our environment. Failure to account for them is frequently 
the reason mathematically precise solutions that look good 
on paper do not always work in the real world. There could 
be several sources for “randomness” in a real floor sweep­
ing problem. There might be obstructions in the area that pre­
vent the sweepers from moving along straight, equally 
spaced, parallel tracks or the sweepers might not choose to 
use such tracks for some reason even if they were possible. 
The density of the sand might not be uniformly distributed 
over the area, but randomly piled up in mounds of higher 
density in some places and lower density in other places. 
This would make it difficult to predict the amount of sand 
being swept up, particularly at lower coverages or for non­
uniform detection profiles like that of broom B4. Finally, 
we could be trying to sweep up randomly scurrying ants 
instead of stationary grains of sand. Even if a swath was 
swept clean, some of the ants might run into it after the 
broom had passed. Although we cannot predict with cer­
tainty the fraction of sand (or ants) that will be swept up in 
any single floor-sweeping problem having random variations 
in one or more of its elements, it is possible to determine 
what the average results of many such sweepings would be. 
The graph of that answer is the curve labeled “Random 
Sweeping” in Figure 12. 

Note that the lower, broader, and flatter the broom per
formance profile, the closer its performance over the area 
will be to the “random sweeping” curve, even though per­
fectly straight, parallel tracks are still being used. Although 
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Percentage of Dirt (pod) vs. Coverage 

Figure 12 

not obvious, using any of the brooms in a random fashion, 
rather than parallel sweeps, or having other significant ran­
dom influences present, would place their average perfor­
mances on the “random sweeping” curve. Therefore, when it 
is feasible to use straight, equally spaced, parallel tracks uni­
formly distributed over an area free of significant random 
variations, this tactic will make more efficient use of the 
available effort than “random” sweeping. How often such 
favorable conditions occur in real-world situations is another 
question. 

We now have the answer to the question posed at the end 
of Part I, but the answer is not a simple one. When used in a 
pattern of perfectly parallel, equally spaced tracks to sweep a 
floor uniformly covered with sand, the four different broom 
designs perform equivalently at low coverages (less than or 
equal to 0.25) and very high coverages (greater than 4 where 
even the curve for B3 surpasses 99%). However, they do 
not perform equivalently at intermediate coverages when 
sweeping areas. The differences among the brooms in this 
intermediate, and most useful, range are significant. 
Alternatively, when the brooms are used in a somewhat “ran­
dom” fashion or when significant randomizing influences 
are present, all four broom designs perform equivalently at 
all coverages, as shown by the so-called “random sweeping” 
curve. 

Multiple Loow-Cooveeraagee Sweepings vs. 
Single High-Cooveeraagee Sweepings 

One might ask whether there is any advantage to sweep­
ing the floor twice at a coverage of 0.5 as opposed to once 
at a coverage of 1.0 since both require the same effort. When 

using broom B2, it should be easy to see that it doesn’t mat­
ter whether the floor is swept once at a coverage of 1.0 (track 
spacing = 0.5 m) or twice at a coverage of 0.5 (track spac­
ing = 1.0 m). The broom is uniformly effective across its 
width. After one pass, the sand left behind is uniformly dis­
tributed over the swept area. Whether the area between two 
adjacent tracks is immediately swept over a second time as 
the broom moves down the adjacent track, or later as the 
result of a second complete sweeping of the area, makes no 
difference. Either technique will sweep up 75% of the sand. 
A similar argument may be applied to B3. However, let us 
examine the situations created by brooms B1 and B4. Unlike 
B2 and B3, which left the remaining sand uniformly distrib­
uted over the test area, broom B1 left half of the test area 
cleanly swept in the form of 10 “bare” 50 cm corridors sep­
arated by 10 untouched corridors also 50 cm wide. Only by a 
very precise placement of the second set of sweeps will we 
get the same results from two sweepings at a coverage of 
0.5 that we got with one sweeping at a coverage of 1.0. Even 
a small error in the placement of broom B1 will produce a 
substantial decline in the amount of sand obtained from the 
second sweeping. Broom B4 presents a similar problem. 

In general, two sweepings of an area at one-half of a 
given coverage can produce results no better than one 
sweeping at the given coverage, and the two low-coverage 
sweepings could easily do worse. Because B1 and B4 are 
very effective close to their tracks, accurate broom place­
ment, relative to the first set of tracks, is necessary if the 
results of two sweepings are to match those of expending the 
same total effort in a single sweeping. Therefore, the out­
come of two low-coverage sweepings is not as predictable as 
with B2 and B3 since the results of two sweepings are so 
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POD vs. Coverage 

Figure 13 

sensitive to where the second set of tracks is placed with 
respect to the first set. However, if the placement of the sec­
ond set of parallel sweeps is independent, i.e., randomly off­
set, from the first set, then on average, over many sweepings, 
we will get substantially less sand for two sweepings at a 
coverage of 0.5 than for one sweeping at a coverage of 1.0. 
Situations often arise where close coordination between 
sweepings is not possible. For example, when we think of 
searching instead of sweeping floors, it seems unlikely that 
two independent parallel track searches of an area using 5­
person teams would exactly replicate the tracks of a single 
10-person team. 

Returning to Searching 
Let us restate Equations [2]–[5] in the terminology of 

searching and search theory. Effort, z, is defined as the dis­
tance traversed by the searcher(s) while operating in the area 
being searched. Stated as a formula, 

[6] z = L, 

where L is the distance traveled by the searchers in the 
searched area. Note that this is the distance traveled along the 
searcher’s actual path, not the lengths of the beelines con­
necting the searcher’s position on one side of the searched 
area with his position when he reaches the other side. 
Equivalently, 

[7] z = v x t, 

where v is the average speed of the searcher(s) while 
searching and t is the time spent searching. The area effec
tively searched is called the effective search effort (or just 
search effort for short), Z, and is defined as the product of 
effective sweep width and effort. That is, 

[8] Z = W x L = W x z = W x v x t, 

where W is the effective sweep width. (Note that effort has 
units of length while search effort has units of area.) Finally, 
coverage, C, is defined as the ratio of the effective search 
effort to the area being searched. Expressed as an equation, 

[9] C = Z, 
A 

where A is the physical size of the area being searched. 
If multiple searchers or several similar resources are used 
simultaneously in an area, then the effort is multiplied 
accordingly, causing corresponding increases in search effort 
and coverage. (However, simultaneous searching by dis­
similar resources, such as searchers on the ground and in an 
aircraft, should normally be treated as separate, independent 
searches.) For the very special case of perfectly straight, 
equally spaced, parallel tracks uniformly distributed over a 
rectangular area, we may take a short cut and compute cov
erage as the ratio of sweep width to track spacing (S), i.e., 

[10] C = W. 
S 

POD vs. Coverage 
When we try to transfer the findings of the parallel track 

experiments described above to searching, we find that 
searching is rarely, in fact almost never, as clean and straight­
forward a proposition as sweeping floors. There are always 
all sorts of random influences on the searching and detec­
tion processes that are beyond the searchers’ (or anyone 
else’s) control. This is sometimes true even when searching 
for objects adrift on the open ocean, and probably even more 
frequently true for searches conducted on or over the ground. 
For this reason, a search model that accounts for random 
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variations is probably a very good unbiased estimator of 
actual organized search performance in the field. 

The mathematical derivation of the so-called “random 
search formula” (also called the exponential detection func­
tion) is beyond the scope of this article, so we will simply 
state, without proof, the formula derived by Koopman:1,2 

[11] POD = 1 - e-c 

In this formula, e is the base of the natural logarithms 
(~=2.71828) and C is the coverage. Koopman’s definition of 
“random” in this context contains the restriction that the 
effort be uniformly distributed over the area being searched. 
In that sense, the searchers’ movements cannot be com­
pletely random as they must fill the area to the same degree 
everywhere, like a liquid fills an open bucket, in order to 
satisfy Koopman’s restriction. 

The exponential detection function has some interesting 
properties. Unlike perfect parallel track searching, the shape 
of the detection profile does not affect the POD computed by 
Equation [11], and perfectly straight, equally spaced, parallel 
tracks are not required. In other words, all detection profiles 
perform equally at equal coverages whenever significant 
random variations in the search parameters are present—as 
long as the effort is uniformly spread over the area. The 
exponential detection function also has the property that 
splitting a given amount of effort in two and performing two 
successive searches of an area always produces the same 
cumulative POD as using all the effort to do a single search 
of the area. 

Figure 13 shows the graphs of POD vs. Coverage for 
three detection profiles that often arise in search theory. 

The upper “curve” that is linear from the origin to 
(1,100%) is the POD graph for a definite range detection 
profile (like the performance profile of B1 shown in Part I) 
following perfectly straight equally spaced parallel tracks. 
The middle curve is based on Koopman’s1,2 mathematical 
model of how warships underway are detected visually from 
the air—the so-called inverse cube law whose detection pro
file was shown near the end of Part I. This middle curve is 
the same one that appears in Figure 5-19 on page 5-29 of 
the U.S. National SAR Manual (1991)3 for estimating the 
POD of any single search. It is based on using Koopman’s 
inverse cube law of detection along perfectly straight equally 
spaced parallel tracks. The lower curve is the graph of the 
exponential detection function. As Koopman1,2 observed, 

“At one extreme is the definite range law, at the 
other the case of random search. All actual situ­
ations can be regarded as leading to intermediate 
curves, those lying in the shaded region. The 
inverse cube law is close to a middle case, a 
circumstance which indicates its frequent empir­
ical use, even in cases where the special assump­
tions upon which its derivation was based are 
largely rejected.” 

In other words, provided there is no systematic error or 
bias affecting the searches, the average results of any search 
technique over many searches must fall on or between the 

upper and lower curves shown in Figure 13. Under ideal 
search conditions where sweep widths are relatively large 
and the parallel tracks are accurately navigated, Coast Guard 
experiments show the middle curve in Figure 13 predicts 
POD remarkably well for experimentally determined sweep 
widths, even those of drifting objects that leave no wake. 
However, as search conditions deteriorate, not only do sweep 
widths decline, the actual detection profiles become much 
lower and flatter than that of Koopman’s inverse cube law. 
As with our broom experiments, this change in the detec
tion profiles drives POD values toward the exponential 
detection function, even for perfect parallel tracks. In other 
words, a coverage 1.0 parallel sweep search for a boat under 
ideal conditions would have a POD of about 78% while a 
coverage 1.0 search for the same boat under poor or diffi­
cult search conditions would not only require more effort 
(due to the reduction in sweep width), it would have a POD 
of only about 63%. 

The Case for Exponential Detection 

Many would argue that most actual search results fall 
closest to those predicted by the exponential detection func­
tion in Figure 13. Searching is a difficult, demanding, and 
sometimes dangerous business. Under actual operational 
conditions, no searcher or sensor package can perform with 
mathematical precision free from random variations, nor can 
any search pattern be followed with absolute precision, nor is 
the search environment perfectly uniform. Even though GPS 
now makes it possible to come very close to perfect naviga­
tion, statistical modeling shows that it takes surprisingly lit­
tle variation from perfectly straight equally spaced parallel 
tracks for expected POD values to be close to the exponen­
tial detection function. Furthermore, the smaller the sweep 
width, i.e., the harder detection becomes, the less variation 
from a mathematically perfect pattern it takes to make the 
exponential detection function the most reliable predictor of 
POD. Adding other sources of random variability or uncer­
tainty about the search parameters will only reinforce the 
exponential detection function as the most reliable estima­
tor of POD. 

Note: We are discussing the average performance over 
many searches and using that information to predict or esti­
mate the results of a single search. However, the actual POD 
achieved on any single search can be outside the shaded 
envelope of Figure 13. One could get lucky and find the 
search object very early in the search without expending 
much effort, creating a (statistically incorrect) temptation to 
claim a 100% POD for a coverage of less than 1.0. A more 
likely situation is one where there is some hidden bias or sys­
tematic error in the conduct of a search, such as avoiding dif­
ficult patches of terrain, making the actual POD for that 
search significantly less than the value predicted by the 
exponential detection curve. We can never know the actual 
POD of any search. We can only know the “found/not 
found” outcome. However, search managers and search team 
leaders need to be aware that actual PODs can be less than 
those predicted by the exponential detection function. These 
individuals need to be alert for and report any problems with 
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the execution of individual searches that might cause such a 
reduction in POD. 

Characteristics of POD Coverage 
vs. Cooveeraagee Curves 

All POD vs. Coverage curves have some important prop­
erties in common. All begin at the origin (0, 0%) with a slope 
of 1.0, i.e. the “rise” of the line tangent to the curve at the 
origin equals the “run.” All but that of the “perfect” definite 
range detection profile fall away from this 45° line at some 
point and approach a POD of 100% more and more gradu­
ally as coverage increases. This property produces a situa­
tion of diminishing returns. For example, suppose five 
searchers can search an area with a coverage of 0.5 during 
one sortie. Using the exponential detection function, this 
would produce a POD of about 39%. Adding five more 
searchers would give a coverage of 1.0 and a POD of about 
63%—an increase of about 24%. Note that doubling the 
effort did not double the POD. Adding five more searchers 
would give a coverage of 1.5 and a POD of about 78%—an 
increase of only about 15%. Finally, adding five more 
searchers (for a total of 20) gives a coverage of 2.0 and a 
POD of about 86.5%—an increase of less than 9%. High 
coverages, and hence high levels of effort, are required to 
achieve high PODs. However, the POD per unit of effort 
expended goes down as the total amount of effort expended 
increases. Another lesson is that a very high coverage prob­
ably is not the wisest way to apply limited resources unless 
a very high POD is required after only one search, such as an 
evidence search where searchers are likely to disturb or 
destroy evidence not found on the first pass. 

An Example 
We’ve covered a lot of ground in this article. It may be 

helpful at this point to give an example of how to use what 
we’ve learned so far. Suppose we are searching for a lost 
child, age 9, in the woods near his home. Suppose we assign 
a three-person search team to a segment of the search area 
having a size of 0.25 square miles. Finally, suppose we have 
previously conducted sweep width experiments in similar 
terrain for search objects resembling a 9-year-old child, and 
those experiments produced a sweep width of 106 feet for 
comparably trained/skilled searchers moving at 0.5 mile per 
hour. We expect our search team to move at about 0.5 miles 
per hour and take about six hours to complete their search 
of the segment. What POD should we expect? 

From Equation [7], we start by computing the effort, or 
total distance moved, for one searcher, as 

z = v x t = 0.5 mph x 6 hours = 3 miles per searcher 
Since we have three searchers, the total effort is 3 x 3 or 9 
miles for the team as a whole. We will assume the sweep 
width determined from earlier experiments is a good esti­
mate for the sweep width in our current situation. Converting 
this value from feet to miles so our units of measure are con­
sistent, we get 

106 feet ________________ = 0.02 milesW = 5280 feet/mile 

Now we may compute the effective search effort, Z, as 
follows, using Equation [8]: 

Z = W x z = 0.02 mile x 9 miles = 0.18 square miles 

We can now compute the coverage using Equation [9]: 

C = Z = 0.18 square miles__________________ = 0.72
A 0.25 square miles 

Using Figure 13, we enter at the bottom with a coverage 
of 0.72, go up to the exponential detection curve, and read a 
POD of about 51% from the vertical axis to the left. If a sci­
entific calculator is handy and has an exponential function 
button, we may also compute the POD from Equation [11] 
as follows: 

POD = 1 - e-c = 1 - e-072 = 1 - 0.48675 = 0.51325 or 51.325% 
The added precision is, of course, completely superfluous. 

Although some experienced searchers may not agree, 
maritime experience has shown that PODs estimated in this 
fashion are generally more reliable, and definitely more con­
sistent, than direct estimates of POD provided by the 
searchers themselves. POD estimates from searchers often 
tend to be optimistic, i.e., too high. Based on the results of 
carefully designed and controlled scientific experiments, 
maritime search planners have adopted a philosophy of ask­
ing searchers to report those things affecting detection which 
they can actually observe. This includes such things as mete­
orological visibility, wind velocity, sea state, and crew 
fatigue, to name a few, along with any other on-scene obser­
vations they think may be important. (Ground teams would 
be expected to report things like the type of terrain and 
amount of ground cover they actually encountered, for 
example.) However, searchers are not asked to estimate 
POD . The search planner uses their reported observations in 
combination with tables of experimentally determined sweep 
width values and correction factors to estimate the actual 
sweep width, coverage and POD. 

It is worth considering how to deal with the situation if 
our search team in the above example unexpectedly returned 
in only three hours instead of six. Let us examine a few of the 
many possibilities. 

First, the searchers could have been moving at the desired 
search speed, traveling a total of only 4.5 miles instead of 9 
miles. This means they expended only half as much effort 
as expected. If the team is sure they “covered” the entire seg­
ment, we can recompute the effective search effort and cov
erage using 4.5 miles of effort instead of 9 miles. The results 
will be 0.09 square miles and 0.36 respectively. Entering 
Figure 13 with a coverage of 0.36, we get a POD of 30% 
from the exponential detection function. 

Second, the searchers could have “covered” only half of 
the segment at the desired search speed. If it is possible to 
determine which half of the segment was “covered,” we can 
recompute the coverage by applying the effective search 
effort of 0.09 square miles to an area of 0.25/2 or 0.125 
square miles to get a coverage of 0.72. Using Figure 13 
(exponential detection), we may assign a POD of 51% to 
the half of the segment that was searched, and a POD of 0% 
to the half that was not. 

A third possibility is that they searched the segment at 
twice the expected search speed (1.0 mph). In this case, they 
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would have traveled the expected distance and expended 9 
miles of effort. However, recalling the discussion in Part I 
about the detrimental effects of increased speed on effective 
sweep width, it is likely that the actual sweep width for the 
search was less than the 106 feet obtained in experiments 
where searchers were moving at only 0.5 mph. If sweep 
width data or an experimentally verified correction factor is 
available for the higher speed, then a sweep width value for 
the higher speed could be estimated and used to recompute 
effective search effort, coverage and POD. Otherwise, we 
will have to estimate the actual sweep width as best we can 
and use that value to recompute effective search effort, cov
erage and POD . A smaller sweep width, of course, will pro­
duce a smaller effective search effort, coverage and POD. 

Finally, a fourth possibility is that the terrain was not as 
difficult to traverse or search as we had anticipated. This 
could mean the search object should have been more 
detectable than originally thought, making the sweep width 
greater than 106 feet. To find out, we would go back to the 
table of sweep width values for various environments and 
find the one for the terrain (and search speed, search object, 
etc.) that most closely corresponded with what the searchers 
actually encountered. Using that new sweep width value, 
we would then recompute the effective search effort and cov
erage. A larger sweep width would, of course, produce a 
larger effective search effort, coverage and POD. 

Looking Ahead 
Determining where to send a limited number of resources 

and how large their assigned areas should be is the ultimate 

question we are striving to answer. One requirement for 
answering this question is having a reliable way to estimate 
effective sweep widths (detectability) so we can compute the 
effective search effort each resource can deliver. A second 
requirement is the availability of a reliable POD vs. 
Coverage curve so we have an objective method for esti­
mating how changes in coverage resulting from different 
allocations of effort will affect PODs. That is, we need to 
know what PODs we can expect from concentrating our 
resources in small areas, and what PODs we can expect as 
we spread our resources out over progressively larger areas. 
A third requirement is an estimate of search object’s location 
probability density distribution over the area. Part III: 
Probability Density Distributions will address this issue. In 
Part IV: Optimal Effort Allocation we will seek to answer the 
question of how to make the best use of the available effort. 

Food for thought until next time: Suppose the area con­
taining a lost or missing person is divided into 10 regions. 
Suppose two of these regions are each assessed as ”very 
likely” to contain the person and all the others are assessed at 
varying, but lower, likelihoods. Finally, suppose one of the 
top two regions is significantly larger than the other. Does 
the assessment of “very likely” mean the top two regions 
each have about the same probability of containing (POC or 
POA) the person or does it mean they each have about the 
same probability density (probability per unit area or 
POC/A)? Warning: The answer could make a significant dif­
ference in how the available effort should be allocated when 
we get to Part IV. 
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Principles of Search Theory

Part III: Probability Density Distributions


by J. R. Frost 

Note: Readers are encouraged to re-read “Principles of 
Search Theory, Parts I and II,” printed in Volume 17, 
Number 2 of Response. We will be referencing them fre
quently. Readers are also encouraged to have pencils, a 
scratch pad, some graph paper, and a calculator handy. 

Where to Search 
Our first two articles dealt exclusively with the mechan

ics of searching. We developed the concept of effective 
sweep width (detectability) and examined how sweep width, 
effort, coverage, and probability of detection over an area are 
all related. However, we did not discuss any issues related 
to where the searching should be done. Our ultimate goal is 
to determine not only where to search in general, but also 
how to deploy the available effort in the most efficient man
ner. An essential factor in deciding how much effort to place 
in each portion of the search area is an estimate of how the 
probability density is distributed over the search area. 
Probability density (Pden) is simply defined as 

[12]	 Pden = POC ,
A 

where POC (also called POA) is the probability that the 
search object is contained in some area and A is the size of 
that area. 

Effective Search (or Sweep) Rate 
Another important quantity we will need for our discus

sions here, and for the optimal effort allocation discussions 
in Part IV, is the effective search (or sweep) rate. It is sim
ply the product of the effective sweep width, W, and the 
search speed for which that effective sweep width is valid. 
Stated as an equation, 

[13] Effective Sweep Rate = W x (Search Speed). 

The effective sweep rate has units of area per unit time (e.g., 
square miles per hour). As we will see in Part IV, the best 
placement of the available effort will depend on the interplay 
between probability density and effective sweep rate as one 
evaluates the search area looking for the best places to search 
during the next search cycle. 

Probability Density Distributions and Probability Maps 
A probability density distribution is usually represented 

by a probability map consisting of a regular grid. For the pur

poses of this discussion, we define a regular grid as one that 
forms geometrically identical square cells. Each cell is then 
labeled with its POC value. Since all cells are equal in size, a 
cell’s POC value is proportional to its Pden value. This type 
of display has the dual advantages of showing at a glance 
both how much probability each cell contains and where the 
highest probability densities lie. Although the POC and Pden 
values are not numerically equal, a cell with twice the POC 
value of another cell also has twice the Pden value of that 
other cell when a regular grid is used. Figure 14 is an exam
ple of a probability map. 

Figure 14 

To determine where to search, we must first estimate 
where the lost or missing person could be. This requires a 
careful, deliberate, thoughtful assessment of all the avail
able information as well as the continual seeking of addi
tional information from all possible sources. “Available 
information” is an all-inclusive term referring to every scrap 
of evidence and data that might shed some light on the lost 
person’s probable locations. In addition to data about a spe
cific incident, statistical data from similar situations, such 
as lost person behavior profiles, can be very useful. 
Historical data can also be useful, especially in popular 
recreational areas. 

In SAR situations, data is frequently obtained from a vari
ety of sources and is often inconsistent. However, such data 
also tends to form a number of self-consistent sets that each 
tell a “story” about what might have happened and where the 
lost person might be. These “stories” are called scenarios. 
Careful analysis of each scenario is then required to esti
mate the lost person’s probable locations if that scenario is 
true. These estimates are then quantified as probability maps, 
thus defining that scenario’s probability density distribu
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tion. The different scenarios are then subjectively “weighted” 
according to the search planner’s perceptions of their relative 
accuracy, reliability, importance, etc., and their probability 
maps are then combined appropriately. Probability maps for 
different scenarios are generally combined by computing, for 
each cell in an area large enough to include all scenarios, 
the weighted average (using the subjective scenario weights) 
of the cell probabilities from each scenario. 

Unfortunately, formal search theory does not shed much 
light on how to go about turning an inconsistent body of evi
dence and data from a variety of sources into numbers on a 
probability map. As Stone,5 one of the world’s leading 
authorities on search theory and its practical application, 
observes, “One of the greatest difficulties in generating prior 
[to searching] probability maps is the lack of systematic, 
proven techniques for eliciting subjective inputs for search 
scenarios.” He goes on to say, “In addition to obtaining sub
jective probabilities, we also have the problem of obtaining 
subjective estimates of uncertainties, times, and other quan
titative information needed to form scenarios.” 

Scenario development and analysis is a complex, diffi
cult, mentally demanding task requiring a good deal of con
centration, attention to detail, and mental discipline. 
Appropriate resources should be dedicated to this task and 
insulated from the often frenetic, and always distracting, 
operational activities. This frequently seems difficult to do in 
SAR situations. The first impulse is to get as much search 
effort as possible into the field as soon as possible because 
statistics show that a lost person’s chances for survival 
decrease rapidly as time passes. While there is nothing 
wrong with mounting a large initial effort (provided more 
effort is on the way) based on only a cursory evaluation of 
the situation, too often this is not followed up with a more 
deliberate evaluation and planning effort for subsequent 
searching should the initial efforts fail. In a few publicized 
cases, it appears that lost persons who could have, and 
should have, been saved were not found in time—sometimes 
in spite of huge expenditures of effort in relatively limited 
areas. This appears to have been a result of, at least partially, 
poor analysis and planning. 

Probability Density and its Importance 
To understand why probability density is important, we 

will return to our floor-sweeping analogy where the density 
of sand covering the floor is comparable to probability den
sity in a search situation. We must also briefly jump ahead 
to optimal effort allocation; a topic discussed more fully in 
Part IV. We will begin by extending our floor-sweeping anal
ogy to a situation more complex than any we have discussed 
so far. 

Consider a school gymnasium with a clear floor space 
measuring 50 meters by 30 meters for an area of 1,500 
square meters (m2). Suppose we divide the floor into four 
regions of unequal sizes so that region R1 covers 600 m2, R2 
covers 400 m2, R3 covers 300 m2, and R4 covers 200 m2. 
Suppose we cover each region uniformly with sand at the 
densities (in grams per square meter (g/m2) of floor space) 
shown in the third column of Table 1. The values in the last 
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two columns were computed from the corresponding area 
and density values in the second and third columns. Figure 
15 illustrates the situation. 

Region Area 
(m2) 

Density of 
Sand (g/m2) 

Amount of Sand 
Contained (kg) 

Percentage of 
Sand Contained 

R1 600 20 12 54.55% 
R2 400 15 6 27.27% 
R3 300 10 3 13.64% 
R4 200 5 1 4.55% 
Totals 1500 14.67 22 100.00% 

Table 1 

Figure 15 

Suppose we have only one sweeper, whose broom is B2 
from our sweep width experiments (see Part I) and whose 
rate of motion anywhere in the gym is 0.5 m/sec (30 m/min) 
regardless of the density of the sand. Finally, suppose our 
lone sweeper is available for only five minutes. If we wish 
for our sweeper to remove the greatest possible amount of 
sand in the time available, where should the sweeping be 
done? 

In five minutes, the sweeper can move the broom a dis
tance of 150 meters. In other words, the available effort, as 
defined in Part II, is 150 m. Since broom B2 is one meter in 
width, the sweeper could sweep an area of 150 m2. This is 
less than the area of any of the four regions. However, all 
other things being equal, the most productive place to sweep 
will be R1 because that is where the sand is most densely 
spread. Recall that broom B2 is uniformly 50% effective 
across its one-meter width and therefore has an effective 
sweep width of only 50 cm (0.5m). Recalling Equation [4] 
from Part II, 

Area Effectively Swept = Effort x (Effective Sweep Width), 

the area effectively swept in five minutes is computed to be 
150m x 0.5m or 75 square meters. From Equation [5] of Part 
II, 

Area Effectively Swept Coverage = _________________________ ,
Physical Size of the Swept Area 

a coverage of 75m2/150m2 or 0.5 is computed for the swept 
area. If the sweeper uses perfectly straight, parallel tracks at 
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a spacing of one meter, Figure 12 from Part II shows B2 will 
sweep up 50% of the sand initially present in 150 m2 of R1, 
or about 1.5 kg. Sweeping one-fourth of region R1 in this 
manner will sweep up more sand in less time than any other 
application of the same effort within the gymnasium. This 
is true because the density of the sand in R1 is higher than 
anywhere else, and it is tacitly assumed the effective sweep 
width and speed (i.e., the effective sweep rate) will be the 
same everywhere. The unwary could fall into a trap at this 
point by jumping to the conclusion that density is the only 
variable that needs to be considered. As we will see, the 
objective is to sweep up as much sand as possible in the least 
amount of time, taking into consideration any and all differ
ences in both density and effective sweep rate from one 
region to another. It is the combined effect of these two vari
ables that determines where sand can be swept up most 
quickly. 

Note that although R1 also contained the most sand, it 
was the high density, not the high percentage of sand con
tained in the region, that caused sweeping there first to be 
more productive than anywhere else. In other words, when 
deciding where to place effort, the density of sand covering 
the floor in a region is far more important than the amount of 
sand contained there. Therefore, how the density of sand is 
distributed over the gymnasium floor will have a great deal 
to do with how the available effort should be distributed over 
the floor in order to sweep up the maximum amount of sand. 
Although density is not the only factor to consider when mak
ing effort allocation decisions, this brief example shows that 
it plays a major role. 

Creating Probability Density Distributions 
As mentioned previously, constructing a probability den

sity distribution from the available information and evidence 
can be a difficult undertaking. In some cases, however, it is 
reasonable to assume a standard type of probability density 
distribution. We will briefly describe two such distributions 
and then return to the more general problem. 

Circular Normal Probability Density Distributions 
When a distressed aircraft flying over a remote area or a 

distressed vessel at sea reports its position, the known 
characteristics of navigation make it reasonable to assume 
the actual position may be some distance from the reported 
position (at least this was true before GPS receivers became 
so readily available). Analyses of these characteristics have 
shown that the actual positions often have a circular normal 
probability density distribution centered on the reported 
position. (Actually, the more general elliptical bivariate nor
mal distribution is more correct, but the circular normal is a 
satisfactory example for this discussion.) For the mathemat
ically inclined, the amount of probability contained (POC) in 
a circle drawn about the center of this type of distribution is 
given by 

-R2 

POC = 1– e 2 

where e is the base of the natural logarithms (≅ 2.71828) 
and R is the radius of the circle in standard deviations (σ). 
(Note that for a circular normal distribution, the amount of 
probability contained within one standard deviation of the 
mean (center) is only about 39%, as compared to about 68% 
for the more familiar one-dimensional “bell curve.” Readers 
who want more information about the statistics of bivariate 
(two-dimensional) data are encouraged to consult a stan
dard text on statistics.) 

The radius for which the POC is 50% is defined by sta
tisticians as the probable error of the position. The probable 
error defines the size of the circle where the chances of the 
actual position being inside the circle equal the chances of it 
being outside the circle. If we center a regular grid on the 
reported position and compute the amount of probability 
contained in each cell, we get a probability map like that 
shown in Figure 16, where the radius of the dashed circle is 
the probable error. The circle contains 50% of the probabil
ity. The other 7.91% contained in the center cell comes from 
the area that is outside the circle but inside the cell in the four 
corners. 

Figure 16 

Although situations where this type of distribution would 
apply are relatively rare in inland SAR (e.g., the forced land
ing of an aircraft in a remote area), they are much more com
mon in maritime SAR. Whenever it does apply, the search 
planner can estimate the probable error of a reported posi
tion and use Figure 16 (or a version with a finer grid) scaled 
to match the appropriate charts or maps, to plan the search. 
Of course, it might be necessary to adjust both the reported 
position and the size of the probable error based on such 
factors as the glide characteristics of the distressed aircraft or 
the drift characteristics of a life raft from a ship that sank. 

Uniform Probability Density Distributions 
Suppose the pilot of an aircraft issues a mayday call giv

ing his tail number but no position. Assume checking the 
flight plan reveals that the aircraft was supposed to be engag
ing in a biological survey of a known wilderness area at the 
time, but no specific flight path was given. If no other infor
mation is available, the search planner has little choice but to 
regard all parts of the area as equally likely to be the site of 
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the distress. This means the probability density is uniformly 
distributed over the area. Figure 17 shows a probability map 
for a uniform probability density distribution. 

Figure 17 

Generalized Probability Density Distributions 
Although resorting to a “standard” probability density 

distribution is the easiest way to generate a probability map, 
it is not always possible to find one that adequately describes 
what the available evidence indicates about where the search 
object may be located. This is a very common situation in 
inland SAR right from the start. Even in maritime cases, 
what may have started out as a “standard” distribution often 
becomes generalized rather quickly due to the vagaries and 
uncertainties of oceanic drift. The Coast Guard addresses 
this problem via its Computer Assisted Search Planning 
(CASP) system. CASP takes both the known variations in 
winds and current from one place and time to another and 
their respective probable errors into account. CASP then 
computes tens of thousands of independent drift trajectories 
using this data. The end result might look something like 
the probability map shown in Figure 18. 

Estimating Probability Densities 
Although formal search theory provides methods for 

optimally allocating effort once a probability density distri
bution has been defined, it does not shed much light on how 
to evaluate evidence, clues, historical data, lost person 
behavior profiles, etc., and use those evaluations to create a 
corresponding probability density distribution. While we 
cannot offer much guidance at this point about assessing the 
available information and data, we can examine some pos
sible methods for assigning numeric values to those assess
ments. 

Let us return to the gymnasium floor described above and 
shown in Figure 15. We now obtain an undistorted photo
graph of the entire floor from a point directly above its cen
ter and make three copies. Like Figure 15, there is enough 
contrast for a person to discern the four regions and the fact 
that the density in R1 is greater than that in R2 which is 
greater than that in R3 which is greater than that in R4. 
Finally, we arrange to have three floor sweepers, Tom, Dick, 
and Mary, participate in some experiments. 

Clearly, this is not a very realistic analogy for the kind of 
evidence a search planner would have to evaluate. Never
theless, the examples that follow will provide some valu
able insights into certain kinds of problems that can arise 
when attempting to translate assessments into probability 
maps. 

Estimating Containment Percentages Directly 
We begin by showing Tom (in isolation from the others) 

one of our photographs. We ask him to mark off the four 
regions and estimate what fraction of the sand is in each. 
We will call this fraction the percentage of containment 
(poc). Tom will likely regard this as a difficult assignment. 
It is clear that R1 covers a little less than half the floor’s area 
but it is also clear that the sand is more dense there than any
where else. Tom must weigh both factors when making his 
estimate. Table 2 summarizes Tom’s estimates of how much 
sand, as a percentage of the total, each region contains. 
Compare the estimated percentages and the computed 
amounts and densities to the corresponding quantities in 
Table 1. 

TOM’S ASSESSMENTS 
Region Area 

(m2) 
Estimated 

poc 
Computed Amount 

of Sand (kg) 
Computed 

Density (g/m2) 

R1 600 50% 0.50 x 22 = 11.0 11,000/600 = 18.33 
R2 400 30% 0.30 x 22 = 6.6 6,600/400 = 16.50 
R3 300 15% 0.15 x 22 = 3.3 3,300/300 = 11.00 
R4 200 5% 0.05 x 22 = 1.1 1,100/200 = 5.50 
Totals 1500 100% 22.0 22,000/1500 = 14.67 

Table 2 

The estimated percentages of containment, though imper
fect, are actually very good, producing densities that are rea
sonably accurate and in about the correct relationship to one

Figure 18 another. In Part IV, we will see that using these densities 
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would cause a less-than-optimal level of effort to be assigned 
to region R1, and more-than-optimal amounts of effort to be 
assigned to the other three regions. (In this context, an 
“optimal” allocation of effort is the one that causes the great
est amount of sand to be swept up in the shortest amount of 
time.) Although the resulting sweeping (search) plan would 
be suboptimal, it would not be dramatically so. 

Ranking the Regions 
We now call in Dick, give him one of our photographs, 

and ask him to mark off the four regions. We then ask him 
to rank the regions, using letters, by the amount of sand each 
one contains. Since there are four regions and it is pretty 
obvious all contain different amounts of sand, Dick chooses 
to use the letters A through D, with A denoting the region 
with the most sand. Dick finds this a very easy task, and his 
rankings, along with the percentages and densities they 
imply are shown in Table 3. 

DICK’S ASSESSMENTS 
Region Letter 

Designation 
Numeric 

Rank 
Computed 

poc 
Computed Amount 

of Sand (kg) 
Area 
(m2) 

Computed 
Density (g/m2) 

R1 A 4 4/10 = 40% 0.4 x 22 = 8.8 600 8,800/ 600 = 14.67 
R2 B 3 3/10 = 30% 0.3 x 22 = 6.6 400 6,600/ 400 = 16.50 
R3 C 2 2/10 = 20% 0.2 x 22 = 4.4 300 4,400/ 300 = 14.67 
R4 D 1 1/10 = 10% 0.1 x 22 = 2.2 200 2,200/ 200 = 11.00 
Totals 10 10/10 = 100% 1.0 x 22 = 22.0 1500 22,000/1500 = 14.67 

Table 3 

Although the percentages reflect Dick’s ranking, they are 
not very accurate. The computed densities are also inaccu
rate. As a result, the values computed from Dick’s ranking 
fail to represent the photographic evidence and also fail to 
approximate the actual values as closely as Tom’s estimates 
in three of the four regions. Although the simple ranking 
method was very easy in this case, we must conclude that it 
did not produce valid densities on which to base an optimal 
sweeping (search) plan. Clearly, there is something wrong 
with this technique. 

Ranking the Regions—Again 
We now call in Mary and present her with the same prob

lem as Dick, (i.e., ranking by letters). We want to see if the 
difficulty we just experienced will repeat itself. She marks 
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Figure 19 

the boundaries of the four regions on the photograph but then 
goes a step further. She draws a grid on the photograph that 
is three cells wide by five cells long, dividing the floor into 

15 square cells of equal size. Conveni
ently, each region is comprised of a 
whole number of cells. She then ranks 
each cell using the same four-letter 
ranking scale Dick used. Each cell in 
region R1 is ranked as “A,” each cell 
in R2 is ranked as “B,” each cell in R3 
is ranked as “C” and each cell in R4 is 
ranked as “D” as shown in Figure 19. 

Grouping the cells by region, she 
gets the results shown in Table 4. 

At first glance, it appears Mary may 
have stumbled upon a perfect method 

since the regional percentages of containment, amounts of 
sand, and densities computed from her assessments are all 
exactly correct! Further consideration may indicate that she 
was just lucky. The numeric values assigned to the letters in 
our ranking scale happen to be exactly proportional to the 
actual cellular percentages of containment. Multiplying each 
of the numeric ranking values (4, 3, 2, and 1) by 2.27 pro
duces the actual cell poc values (9.09, 6.82, 4.55, and 2.27). 
From another, equivalent, point of view, we can say the num
bers 4, 3, 2, and 1 are in the same relationship to one another 
as the different cell percentages (e.g., 9.09/6.82 = 4/3). 

It is worthwhile at this point to note the relationship of the 
ranking values to the densities. Multiplying each of the rank
ing values (4, 3, 2, and 1) by five produces the density val
ues (20, 15, 10, and 5). This means these two sets of values 
are also proportional to one another, just as in the case of 

MARY’S ASSESSMENTS 
Region Letter 

Rank 
Numeric 

Rank 
Computed Cell 

poc 
Computed Region 

poc 
Computed Amount 

of Sand (kg) 
Computed Density 

(g/m2) 

R1 6 x A 6 x 4 = 24 4/44 = 9.09% 6 x 9.09 = 54.55% 0.5455 x 22 = 12 12,800/ 600 = 20 
R2 4 x B 4 x 3 = 12 3/44 = 6.82% 4 x 6.82 = 27.27% 0.2727 x 22 = 6 6,000/ 400 = 15 
R3 3 x C 3 x 2 = 6 2/44 = 4.55% 3 x 4.55 = 13.64% 0.1364 x 22 = 3 3,000/ 300 = 10 
R4 2 x D 2 x 1 = 2 1/44 = 2.27% 2 x 2.27 = 4.55% 0.0455 x 22 = 1 1,000/ 200 = 5 
Totals 44 100.00% 22 22,000/1500 = 14.67 

Table 4 
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the cellular percentages of containment. This in turn means 
Mary could have used any smaller grid size she liked (e.g., 
one with 5 m x 5m cells), assigned letter values to each in the 
same way (e.g., 24 As, 16 Bs, etc.), and obtained the correct 
results for regional percentages and densities. She also could 
have dispensed with the grid altogether and used the areas 
of the regions in place of the number of cells in Table 4. 

From Mary’s assessment, using a regular grid of cells, 
we may produce a “map” like that in Figure 20, showing 
how the sand is distributed. Note that on this “map,” higher 
percentages imply proportionately higher densities. 

Figure 20 

Mary’s good fortune illustrates an important lesson for 
search planning: Whenever an assessment value is assigned 
to a subdivision of the possibility area, that value must be 
proportional, in a precise mathematical sense, to the subdivi
sion’s probability of containing the search object. Similarly, 
the assessment values must reflect the correct relationships 
among the subdivisions. If one subdivision is assessed as an 
“8” and another as a “4,” the implication is that the first sub
division is twice as likely to contain the search object as the 
second. If the evaluator does not agree with this implica
tion, then he has chosen one or both values incorrectly. 

DENSITY-BASED ASSESSMENTS 
Region Area 

(m2) 
Relative 
Density 

Relative Amount 
of Sand 

Computed 
poc 

R1 600 4 600 x 4 = 2400 2400/4400 = 54.55% 
R2 400 3 400 x 3 = 1200 1200/4400 = 27.27% 
R3 300 2 300 x 2 = 600 600/4400 = 13.64% 
R4 200 1 200 x 1 = 200 200/4400 = 4.55% 
Totals 1500 4400 4400/4400 = 100% 

Table 5 

An Assessment Based on Density Estimates 
It might have been an interesting exercise to ask the 

sweepers to estimate, from the photograph, the relative den
sities in the regions instead of percentages of containment. 
Such estimates could have been applied to the areas of the 
regions to get estimates of the relative amounts of sand con
tained in each. Then, these relative amounts could have been 
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used to compute the percentages of containment. The results 
might have been both more accurate and more consistent if 
this had been tried. For example, suppose an evaluator had 
estimated from the photograph that the density in region R3 
was twice that of region R4, the density in R2 was three 
times that of R4 and the density in R1 was four times that in 
R4. Table 5 shows how the percentages of containment 
could be computed from these relative density estimates. 

Another Short Exercise 
To show that an assessment method works, in general, if 

the assessment values accurately represent the relative pro
portions of the percentages of containment, suppose we 
sweep the gymnasium floor clean and set up a new experi
ment as illustrated in Figure 21. 

Figure 21 

We will use the same regions and densities as before but 
distribute the sand as follows: 5 g/m2 in R1, 10 g/m2 in R2, 
15 g/m2 in R3, and 20 g/m2 in R4. This means R1 will con
tain 3 kg of sand, R2 will have 4 kg, R3 will have 4.5 kg, and 
R4 will have 4 kg for a total of 15.5 kg. Knowing the previ
ous four-letter scale produces numbers that are in the cor
rect proportions for these densities when using Mary’s 
cellular method, we can use these letters again with confi
dence to produce Table 6. 

Note that it would be more difficult to apply a simple 
ranking system to this distribution than the previous one 
because it is much less obvious which region contains the 
most sand and which contains the least. However, even if 
we use the correct regional poc values from Table 6 as the 
basis for a simple ranking, the results will be inaccurate. 
Table 7 shows the percentages, amounts of sand, and densi
ties that would be computed from such a simple ranking. 
Compare these to the correct values in Table 6 below. 

We must again emphasize that, if assessment values are to 
produce accurate and valid probability of containment (POC 
or POA) estimates, the value assigned to each region, cell, 
segment, or any other subdivision of the search area must 
be mathematically proportional to that subdivision’s proba
bility of containment. Stated another way, the assessment 
values assigned to the various subdivisions must be in the 
correct proportions to one another across the search area as 
a whole. 
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CELLULAR ASSESSMENT OF FIGURE 21 
Region Letter 

Rank 
Numeric 

Rank 
Computed Cell 

poc 
Computed Region 

poc 
Computed Amount 

of Sand (kg) 
Computed Density 

(g/m2) 

R1 6 x D 6 x 1 = 6 1/31 = 3.23% 6 x 3.23 = 19.36% 0.1936 x 15.5 = 3.0 3,000/600 = 5 
R2 4 x C 4 x 2 = 8 2/31 = 6.45% 4 x 6.45 = 25.81% 0.2581 x 15.5 = 4.0 4,000/400 = 10 
R3 3 x B 3 x 3 = 9 3/31 = 9.68% 3 x 9.68 = 29.03% 0.2903 x 15.5 = 4.5 4,500/300 = 15 
R4 2 x A 2 x 4 = 8 4/31 = 12.90% 2 x 12.90 = 25.81% 0.2581 x 15.5 = 4.0 4,000/200 = 20 
Totals 31 100.00% 15.5 15,500/1500 = 10.33 

Table 6 

SIMPLE RANKING ASSESSMENT OF FIGURE 21 
Region Letter 

Designation 
Numeric 

Rank 
Computed 

poc 
Computed Amount 

of Sand (kg) 
Computed 

Density (g/m2) 

R1 C 1 1/8 = 12.5% 0.125 x 15.5 = 1.9375 1,937.5/600 = 3.23 
R2 B 2 2/8 = 25.0% 0.250 x 15.5 = 3.8750 3,875.0/400 = 9.69 
R3 A 3 3/8 = 37.5% 0.375 x 15.5 = 5.8125 5,812.5/300 = 19.38 
R4 B 2 2/8 = 25.0% 0.250 x 15.5 = 3.8750 3,875.0/200 = 19.38 
Totals 8 100.0% 15.5000 15,500/1500 = 10.33 

Table 7 

Analysis of Results 
Tom had difficulty coming up with correct values because 

he had to mentally estimate percentages of containment by 
balancing the sizes of the regions against their apparent rel
ative densities. Nevertheless, he was able to produce rea
sonably satisfactory results for this very simple problem. It is 
unlikely he would do as well with a more complex situa
tion, such as that represented by Figure 21. 

Dick’s simple rankings produced unsatisfactory estimates 
of both percentages of containment and densities. A simple 
ranking does not address the essential proportionality rela
tionships needed for estimating these values. Therefore, sim
ple ranking systems should not be used since they produce 
inconsistent and misleading results. 

Mary solved Tom’s problem with unequal areas by using 
a regular grid. A grid worked well for this problem, but grids 
may not work as well in situations where irregular geo
graphic features are a significant factor in assessing where 
the lost person is likely to be. Because Mary was also fortu
nate enough to be using assessment values that were in the 
same proportions as the actual densities (and cellular per
centages of containment), her results were exactly correct. In 
a sense, Mary was not ranking the cells as much as she was 
rating them on a scale of 1 to 4—a scale that happened to 
provide exactly the values she needed. 

Proportional Assessment 
Since correct proportionality is so important, we need a 

procedure for making proportional assessments that is more 
dependable than Mary’s happy accident. One such procedure 
is for each evaluator to decide which region contains the 
most sand (probability) and then rate all other regions against 
this “standard.” For example, suppose Dick had rated the 

regions of Figure 15 on a scale of, say, 1 to 10 with R1 being 
assigned a value of 10. If he then decided that R2 contained 
a little more than half as much sand as R1, he might have 
rated it with a value of 6 (i.e., as containing about 60% as 
much sand as R1). Similarly, he might have rated R3 with a 
value of 3 (30% as much sand as R1) and R4 with a value 
of 1 (only 10% as much sand as R1). If Dick had chosen 
these proportional assessment values, his results would have 
been much closer to the actual values shown in Table 1. In 
fact, his results would have been identical to Tom’s in Table 
2, as shown in the table below. 

PROPORTIONAL RATING ASSESSMENT OF FIGURE 15 
Region Proportional 

Assessment 
Computed 

poc 

R1 10 10/20 = 50% 
R2 6 6/20 = 30% 
R3 3 3/20 = 15% 
R4 1 1/20 = 5% 

Totals 20 100% 

For Figure 21, using the same 10-point scale and pro
portional assessments of 6, 8,10, and 8 for R1 – R4 respec
tively would have produced regional poc values of 18.75%, 
25%, 31.25% and 25% respectively. These are very close to 
the correct values shown in Table 6. (The reader is encour
aged to verify these figures and compute the amounts of sand 
and densities as an exercise.) It is important to understand 
that simply sorting the regions into a list in descending order 
of percentage of containment does not provide enough 
information to reliably estimate what those percentages are. 
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Another way to solve the problem of also encouraged to make up their own 
unequal areas, from a mathematical stand- exercises, like those above, and develop 
point at least, is to use a proportional Obtaining meaningful the corresponding probability maps. This 
assessment technique to estimate the rela- Probabilities of practice will provide a deeper understand
tive densities and use them in conjunction ing of the concepts involved. 
with the regional areas to compute percent- Containment 
ages of containment. Table 5 above illus- REQUIRES Proper Use of Probability Density 
trated how this could be done. 

the use of a We must pause again for a preview of 
things to come if we are to avoid leaving

Containment vs. Density Estimates Proportional false impressions from our simple exam-
It is important at this point to reconsider	 ples. So far, the only variable we have con-Assessment sidered is probability density and the onlythe question posed at the end of Part II: 

Technique. problem we have really considered isIf two regions of different sizes are each	 where to place the first small increment ofassessed as being “very likely” to contain 
the search object, does it mean 

a) their probabilities of containment are both equally high 
or 

b) their probability densities are both equally high? 

When an evaluator believes a particular portion of the 
search area is “very likely” to contain the search object he 
could mean one of two things: 

1.	 Considering all pertinent data, this portion of the search 
area is very likely to contain the search object irrespective 
of its size as compared to the other portions. In this case, 
he is estimating a relative probability of containment. 

2.	 Considering all pertinent data, this portion of the search 
area is very likely, relative to its size, to contain the search 
object as compared to the other portions in relation to their 
sizes. In this case, he is estimating relative probability den
sity. 

When it comes to computing probability densities for use 
in the optimal allocation of effort, the distinction between 
these two interpretations is of paramount importance. A 
small portion of an area may have a high probability density 
and a low probability of containment. On the other hand, a 
large portion may have a low probability density but a high 
probability of containment. A small portion with a high prob
ability of containment will necessarily have a high proba
bility density. Similarly, a large portion with a high 
probability density will necessarily have a high probability of 
containment. It is easy to become confused, and it is neces
sary to take conscious steps to avoid such confusion. It all 
boils down to exactly how the evaluator accounts for differ
ing sizes among the regions, segments, etc., comprising the 
search area. The evaluator’s mode of thinking (containment 
vs. density) may in turn depend on the nature of the available 
information. When using a regular grid or other arrangement 
where all the basic subdivisions of the search area have the 
same size, the evaluator is freed from this potential point of 
confusion. In this situation, an estimate of the relative prob
ability densities is also an estimate of the relative probabili
ties of containment and vice versa. 

Using the densities of sand on different parts of a floor 
as an analogy for probability density, readers are encouraged 
to develop a probability map for Figure 21 using Table 6. 
(The correct answer is contained in this article.) Readers are 

effort. (Recall that a searcher’s effort is de
fined as the distance traveled by the 

searcher while searching, or, equivalently, the searcher’s 
speed times the amount of time spent searching.) We have 
looked at the effects of density differences while keeping 
speed and sweep width (i.e., the effective sweep rate) con
stant in order to give a simple demonstration of why proba
bility density is important. We have not yet tried to show how 
variations in probability density should be used in the more 
complex, and more typical, effort allocation problems that 
also involve variations in effective sweep rates as well as 
the simultaneous placement of significant numbers of 
resources in different parts of the search area. Therefore, 
readers should not jump to the conclusion, for example, that 
regions, segments, cells, etc., should be searched in descend
ing order of probability density. Unfortunately, the answer 
is not that simple. 

The ultimate issue for the search planner is determining 
how the available effort should be apportioned among the 
various parts of the search area. A simple ranking might tell 
the planner where to send a single resource initially, but it 
does not tell him how to distribute a number of resources 
over the area as a whole. In other words, if we are to make 
the best use of our resources, we must know not only where 
to place effort, but how much of the available effort should 
be placed in each part of the overall search area. The proba
bility densities in the various portions of the search area are 
an important factor to consider. Other equally important fac
tors include the effective search (or sweep) rates in the dif
ferent portions of the search area as well as the sizes (areas) 
of those portions. In Part IV—Optimal Effort Allocation, 
we will see how the combined effects of all these factors 
affect the choice of areas where effort should be placed and 
how much of the available effort should be assigned to each 
in order to maximize the probability of a successful outcome. 

Creating Generalized Probability Density Distributions 

Whenever search planners outline areas on a map or chart 
and assign probability values to them, they are creating a 
probability density distribution, regardless of whether they 
are thinking of their estimates in that way. A good estimate 
of how the probability density is distributed over the possi
bility area is an essential input when deciding how to deploy 
the available effort so we maximize our chances for finding 
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the lost person in the minimum amount of time. Therefore, 
we must be very careful about how subjective assessments 
are translated into probabilities of containment (POCs) with 
their corresponding probability densities (Pdens). As we 
have just seen, even when there is evidence as good as a pho
tograph showing how the density is distributed (something 
that will never be available for search planners), significant 
problems can arise from some techniques of turning subjec
tive estimates into numeric values. All of the available evi
dence bearing on where the lost person might be during the 
next set of search sorties needs to be care
fully evaluated in a way that will produce a 
valid estimate of how the probability den
sity is distributed. Although very subjec- Estimating 
tive assessments will always be necessary probabilities of 
and current practices typically produce 
estimates of probabilities of containment, containment (POCs) 
evaluators should be aware of the impor- for SAR situationstant role the probability densities com
puted from their POC estimates will play remains a 
in finding the optimal distribution of effort. very subjective and 
Some Things to Consider a very difficult task for 

which no simpleWe will now offer some additional 
thoughts for SAR managers and search solutions exist. 
planners to consider. 

a. Pre-planned Searches. If historical 
records are available for an area of responsibility (AOR) 
where SAR incidents are relatively frequent, consider ana
lyzing those records for historical trends and insights into 
where lost persons are most often found. Consider building 
historical probability maps and developing optimal search 
plans for them (after reading Part IV) for use in initial 
searches while the evidence pertinent to a specific incident is 
being carefully evaluated. Consider working with a profes
sional statistician or practitioner of operations research while 
doing this work. 

b. Assessing the Evidence and Other Data/Information. 
When a SAR incident arises, one, or preferably more, per
sons should evaluate the evidence, clues, historical data, 
behavior profiles, etc., and develop estimates of where the 
lost person is likely to be. This topic alone could be the sub
ject of many articles or even books. For now, it is important 
to emphasize the requirement for carefully evaluating the 
body of available, often conflicting, evidence to extract as 
much information as possible about the lost person’s proba
ble locations. Evaluators should develop a number of sce
narios compatible with self-consistent subsets of the 
available data. The different scenarios should then be 
weighted according to their relative likelihood of represent
ing the true situation. However, evaluators should strive to 
avoid “over-assessing” the evidence used in individual sce
narios. When making estimates that will ultimately be used 
to produce probability maps, evaluators must resist the temp
tation to make distinctions between cells, regions, segments, 
etc., that are finer, or more detailed, than the available evi
dence will support. Recall the example above of the light air

craft being used to survey a wilderness area. If there truly 
were no further information available from any source, it 
would be difficult to justify anything other than a uniform 
probability density distribution for the scenario of the plane 
going down while engaged in survey operations in the area. 

c. Assumptions vs. Facts. Evaluators need to clearly 
document assumptions they make when developing possi
ble scenarios and keep them separate from the known facts. 
An assumption, if repeated too often and questioned too sel

dom, gradually takes on the appearance of 
fact and can lead to something called “sce
nario lock.” Scenario lock occurs when 
planners become fixated on a particular 
(and not always the most likely) scenario 
to the exclusion of all others. Such fixa
tions may lead planners far astray and 
result in significant delays or even com
plete failures. This unsatisfactory situation 
can arise from basing an extended search 
on an initial cursory assessment that is 
never revisited. Therefore, it is important 
to conduct regular re-evaluations to 
account for new evidence (including neg
ative search results), re-evaluate assump
tions, and prevent scenario lock. 

d. Assessments and Planning vs. 
Operations. Evaluators should concern 
themselves only with evaluating the avail

able evidence. Such things as the logistical and management 
problems associated with the conduct of search operations 
should not be allowed to affect the evidence assessment 
process. The ultimate objective of evidence assessment is a 
probability map that correctly reflects the evaluators’ assess
ment of the available data. In other words, it is the job of the 
evaluators to ascertain, to the best of their abilities, the mean
ing of the available evidence and data in the context of the 
current incident and quantify that meaning via a probability 
map. Once a probability map has been constructed from the 
assessment results, then search planners can proceed, via 
the methods to be described in Part IV, to determine how to 
distribute the available effort to the greatest advantage. Once 
this is done, search managers can work out the details of how 
subdivide regions into manageable segments, how to deploy 
and recover the search resources, etc. 

e. A Process of Elimination. Like many other types of 
investigations, SAR cases are “solved” largely by a process 
of elimination. In SAR, the objective is to eliminate uncer
tainty about the lost person’s location and condition. 
Searching is but one of many tools used in the process for 
eliminating this uncertainty. However, it is by far the most 
involved, expensive, and risky tool, and one that is used only 
when it is believed the lost person is in imminent danger. 
These are characteristics that require searching to be done 
in the most efficient, effective manner possible and justify 
significant investment in the assessment of evidence, plan
ning of searches, and search planning aids, such as com
puter programs to compute optimal effort allocations and 
keep track of search results. 
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Principles of Search Theory

Part IV: Optimal Effort Allocation


by J. R. Frost 

Note: Readers are encouraged to re-read Parts I, II, and III. 
We will be using all of the concepts they introduced. Readers 
are also encouraged to have pencils, a scratch pad, some 
graph paper, and a calculator handy. 

Goal of Search Planning 
The ultimate goal of any search planner is to develop a 

plan for applying the available resources to the search space 
in a way that maximizes the chances for finding the object 
of the search in the minimum amount of time. In other 
words, the search plan should represent the most effective 
and most efficient use of the available effort. Search effec
tiveness is measured by a quantity called the probability of 
success. The probability of success is defined as the product 
of the probability that the searched area contained the object 
at the time of the search (POC or POA) and the probability of 
detecting the object if it was there (POD). The general for
mula for computing the probability of success for a searched 
area is 

[14] POS = POD x POC. 

Equation 14 may also be used to predict the probability of 
success for a search of an area based on predicted POC and 
POD values. The overall effectiveness of all searching done 
to date is given by the cumulative overall probability of suc
cess. This value is the sum of all the un-normalized POS val
ues over all segments of the search area for all searching 
done to date. It represents the chances that all searching done 
to date would have found the search object if it was any
where in the possibility (search) area(s) of the scenario(s) 
under consideration, regardless of whether all parts of these 
possibility area(s) have actually been searched. 

Search efficiency is measured by how quickly POS 
increases as the search progresses. The search plan that 
increases POS at the maximum possible rate for the effort 
that is available is said to be a uniformly optimal search plan. 
A search plan that achieves the same final POS for the same 
effort, but takes longer and/or does not increase POS at the 
maximum possible rate in the early stages, is said to be a 
T-optimal search plan where T is the time spent expending 
the available effort. A T-optimal search plan is the next best 
thing to a uniformly optimal search plan. As this article pro
gresses, we will see how to develop uniformly optimal 
search plans in the absence of real-world operational con

straints. Then, briefly, we will discuss how to modify such 
plans so that operational constraints may be addressed with
out decreasing the rate of POS growth or the final POS too 
badly. 

General Review 
In Part I, the concepts of detection profile and effective 

sweep width were introduced. In Part II, the concept of area 
coverage was introduced and it was defined in terms of 
effort, effective sweep width, and the amount of area over 
which the effort was being applied. The relationship between 
coverage and probability of detection, POD, was explored 
for several different detection profiles when used in parallel 
sweep search patterns. The relationship between coverage 
and POD for so-called “random” searching was also 
explored, producing the exponential detection function. 
Graphs depicting these relationships were constructed. An 
argument favoring the exponential detection function as the 
most realistic estimator of POD under actual operational 
search conditions was advanced. In Part III, the importance 
of probability density and having a good estimate of how it is 
distributed over the search area (the probability density dis
tribution) were demonstrated using the density of sand on a 
floor as an analogy. The concept of effective search (or 
sweep) rate was introduced. The notion of a probability map 
was introduced by using a regular grid of cells and estimat
ing the amount of probability contained in each (probability 
of containment, or POC). From these values, probability 
densities could be computed for each cell. It was shown that 
it was also possible to use the reverse process of first esti
mating the probability densities and then computing the 
probabilities of containment. We will now investigate how 
all of these concepts can be used together to make the most 
productive use of the available effort. 

In the paragraphs that follow, we will revisit the concept 
of effective search (or sweep) rate, set up some floor-sweep
ing experiments and define a term called productive sweep
ing rate (psr). After performing some experiments to get a 
“feel” for the general nature of the optimal effort allocation 
problem, we will define a new term called the probable suc
cess rate (PSR) using the productive sweeping rate from our 
experiments as an analogy. 
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Effective Search (or Sweep) Rate 
We will begin by reviewing the notion of effective search 

(or sweep) rate. Recall from Part I that the effective sweep 
width, W, is a measure of detectability for a particular sen
sor “sweeping” an area at a particular rate of speed, v, look
ing for a particular search object under a particular set of 
environmental conditions. If objects were uniformly distrib
uted over a large area, then W is the width of the swath along 
the sensor’s track that contains the same number of objects 
as the sensor detects in a single pass through the area in a 
straight line. This does not imply, however, that all the 
objects detected will be within that swath. In fact, the num
ber of objects detected outside the swath will equal the num
ber not detected within the swath. (This is yet another way to 
define effective sweep width.) The effective search (or 
sweep) rate is simply the product of the effective sweep width 
and the corresponding search speed. That is, 

[15] Effective Search (or Sweep) Rate = W x v. 

The effective search rate has units of area per unit time (e.g., 
square miles per hour). Note that multiplying the effective search 
rate by the time, t, expended in an area produces the amount of area 
effectively swept. 

[16] Area Effectively Swept = (Effective Search Rate) x t 

A Floor-Sweeping Experiment 
Let us recall the second gymnasium floor problem used in 

Part III and depicted in Figure 22. 

Figure 22 

The area shown has dimensions of 30 meters by 50 
meters. Each of the four regions can be formed from a whole 
number of square “cells” measuring 10 meters on a side. 
Recall that we used sand as an analog for probability, spread
ing the sand uniformly within the different regions at cer
tain pre-determined densities. Table 8 lists the information 
on how the sand is distributed. 

Figure 23 is a “probability map” corresponding to Figure 
22 and Table 8 where the “probabilities” actually show what 
fraction of the total amount of sand initially present is 
contained in each cell. 
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Region Area 
(m2) 

Density of 
Sand (g/m2) 

Amount of Sand 
Contained (kg) 

Percentage of 
Sand Contained 

R1 600 5 3.0 19.35% 
R2 400 10 4.0 25.81% 
R3 300 15 4.5 29.03% 
R4 200 20 4.0 25.81% 
Totals 1500 10.33 15.5 100.00% 

Table 8 

1 

3.23% 

2 

3.23% 

3 

6.45% 

4 

6.45% 

5 

6.45% 

6 

3.23% 

7 

3.23% 

8 

6.45% 

9 

9.68% 

10  

12.90% 

11 

3.23% 

12 

3.23% 

13 

9.68% 

14 

9.68% 

15 

12.90% 

Figure 23 

Assume that we have obtained the services of five sweep
ers for a period of 10 minutes (600 seconds). We will assume 
they each have a broom like broom B2 from our earlier arti
cles. Recall that B2 is uniformly 50% effective across its 
one-meter width, giving it an effective sweep width of 0.5 
meters (m) at a speed of 0.5 meters per second (m/sec) or, 
equivalently, 30 meters per minute. Having five sweepers for 
10 minutes gives us a total of 50 sweeper-minutes. 
Multiplying this value by the speed, v, we get an available 
sweeping effort of 50 minutes times 30 meters per minute 
or 1,500 meters. We now wish to determine how we should 
apply this effort so that the maximum amount of sand is 
swept up in the minimum time. Readers are encouraged to 
pause for a moment to consider how they would approach 
this problem. 

Productive Sweeping Rate (psr) 
Let us begin by defining the productive sweeping rate as 

the amount of sand a broom sweeps up per unit time. The 
productive sweeping rate depends on the effective sweep rate 
and the density of the sand in the area that is being swept. 
The productive sweeping rate (psr) may be computed using 
Equation [17]. 

[17] psr = (Effective Sweep Rate) x Density 

For example, if the effective sweep width is 0.5 m and the 
sweeping speed is 0.5 m/sec in all regions, then we see from 
Equation [15] that the effective sweep rate per broom in all 
regions is 
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Effective Sweep Rate =

W x v = 0.5 x 0.5 = 0.25 square meters per second.


If the density is 20 grams per square meter, then we see 
from Equation [17] that the productive sweeping rate per 
broom is 

psr = 0.25 x 20 = 5 grams per second. 

Computing the values for each region, we get the results 
shown in Table 9. 

Using Prooducctivee Sweeeeping Rate 
Sweeping region R4 will produce more sand per second 

than sweeping anywhere else, at least initially. Table 9 shows 
that 5 g/sec per broom can be swept up. Working together 
by spacing themselves one-meter apart in a line abreast for
mation, the five sweepers can sweep R4 completely one time 
with a uniform coverage of 0.5 in just 80 seconds. The total 
effort expended is 80 sec x 0.5 m/sec x 5 sweepers or 200 
meters. This will remove half of the sand, or a total of 2 kg 
from the 4 kg originally present in R4. (That is 12.90% of the 
amount of sand initially present in the gym.) However, once 
this is done, R4 no longer has the highest density. In fact, its 
density and psr have been reduced by half, to those of R2, 
or 10 g/m2 and 2.5 g/sec respectively. Updating Table 9 to 
reflect this change produces Table 10. Figure 24 shows the 
updated probability map. Note that percentages of contain
ment (poc) and percentages of sand swept up to date (cumu
lative pos) will be computed with respect to the total amount 
of sand initially present. “Re-normalizing” these percentages 
to make them reflect the percentages of sand remaining 

Table 9 
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9.68% 

15 

6.45% 

Figure 24 

would add considerably more computation but would not 
contribute to our purposes. In fact, re-normalizing would 
make keeping track of actual densities, productive sweeping 
rates (psr), and the total amount of sand removed to date 
(cumulative pos) a much more difficult chore. Although 
omission of the re-normalization step may be somewhat dis
concerting to those familiar with the rule of Bayes and 
Bayes’ Theorem from statistics, it will not affect the outcome 
of our effort allocation decisions, the amount of sand 
removed or the amount of sand remaining in any way. 
However, it will make the computations much simpler. 

R3 now has the highest psr value at 3.75 g/sec. In another 
120 seconds, the five sweepers can complete one coverage 
0.5 sweeping of R3, removing half of its sand, or 2.25 kg. 
The effort required is 120 sec x 0.5 m/sec x 5 sweepers or 

REGIONAL VALUES BEFORE ANY SWEEPING 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.25 10 2.50 0 0 0 
R3 0.25 15 3.75 0 0 0 
R4 0.25 20 5.00 0 0 0 

REGIONAL VALUES AFTER SWEEPING R4 ONCE 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.25 10 2.50 0 0 0 
R3 0.25 15 3.75 0 0 0 
R4 0.25 10 2.50 80 200 2 
Totals 80 200 2 

Table 10 
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REGIONAL VALUES AFTER SWEEPING R4 & R2 ONCE EACH 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.25 10 2.50 0 0 0 
R3 0.25 7.5 1.875 120 300 2.25 
R4 0.25 10 2.50 80 200 2.00 
Totals 200 500 4.25 

Table 11 
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Figure 25 

300 meters. As with R4, R3’s density and psr values are 
reduced by half, to 7.5 g/m2 and 1.875 g/sec respectively. 
In just 200 seconds of elapsed time, 2 + 2.25 or 4.25 kg of 
sand out of the total of 15.5 kg on the gym floor have been 
removed (cumulative pos = 4.25/15.5 or 27.42%). After this 
sweeping, R3 is no longer has the highest psr. That honor is 
now shared between regions R4 and R2, as shown in Table 
11 and Figure 25. 

Between them, R4 and R2 contain 6 kg of sand. 
Sweeping these two regions one time at a coverage of 0.5 
will require 240 seconds (6 minutes). One such sweeping 
will remove 3 kg of sand, reducing their densities to 5 g/m2 
– the same density as R1. R4 will be left with 1 kg of sand 
and R2 will have 3 kg remaining. So far, we have removed 
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Figure 26 

2 + 2.25 + 3 or 7.25 kg of the sand in the gym for a cumula
tive pos of 46.77% (7.25/15.5). Note that R4 has been swept 
twice, R2 and R3 have each been swept once, and R1 has yet 
to be swept at all. Table 12 and Figure 26 show the state of 
affairs at this point. 

Now, R3 again has the highest psr value. In another 120 
seconds, the sweepers can remove half of its remaining sand, 
or 1.125 kg, reducing its density and psr values to 3.75 g/m2 
and 0.9375 g/sec respectively. At this point, we have 
removed 2 + 2.25 + 3 + 1.125 or 8.375 kg of sand (cumula
tive pos = 54.03%) and we have expended (80 + 120 + 240 
+ 120) sec x 0.5 m/s x 5 sweepers or 1400 meters of effort. 
Table 13 and Figure 27 apply. 

REGIONAL VALUES AFTER SWEEPING R4 TWICE, R2 & R3 ONCE EACH 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.25 5 1.25 160 400 2.00 
R3 0.25 7.5 1.875 120 300 2.25 
R4 0.25 5 1.25 160 400 3.00 
Totals 440 1100 7.25 

Table 12 
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REGIONAL VALUES AFTER SWEEPING R4 & R3 TWICE, R2 ONCE 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.25 5 1.25 160 400 2.000 
R3 0.25 3.75 0.9375 240 600 3.375 
R4 0.25 5 1.25 160 400 3.000 
Totals 560 1400 8.375 

Table 13 

The honors for having the highest psr value are now 
shared among R1, R3, and R4. However, we have only 100 
meters of effort left. That is just enough to sweep one cell 
on the probability map one time at a coverage of 0.5. Any 
of the 12 cells that still contain 3.23% of the original 15.5 
kg of sand will do. Each contains 0.5 kg of sand. We choose 
to sweep the middle cell (8) for reasons that will become 
apparent later. Sweeping this cell with our remaining effort 
will remove 0.25 kg of sand, bringing the total amount of 
sand removed up to 8.625 kg for a cumulative overall pos 
of 55.65%. Figure 28 is the final probability map. 

Examining the Results 
The plan just described has some interesting characteris

tics. If the sweepers moved from region to region exactly 
as described (and we do not count transit times against the 50 
available sweeper-minutes), then the amount of sand 
removed at any point in time during the process would be the 
maximum possible amount that could have been removed up 
to that point. Therefore, this is a uniformly optimal sweep
ing plan. Note that the order in which the regions were swept 
to achieve uniform optimality was neither initially nor intu
itively obvious, even though this is a relatively simple prob
lem. In addition to having regions with differing sizes and 
densities, we could have complicated the problem further 
by varying the effective sweep widths and their correspond
ing sweeping speeds from one region to another as well (and 
we will, shortly). Also note that one region was not swept at 
all even though it contained nearly one-fifth of the total 
amount of sand. 

Analogies with Searching 
We should pause and consider how the floor-sweeping 

experiments we have just completed relate to searching. 
Recall that we are using sand on the floor as an analogy for 
probability. Therefore, searching an area may be thought of 
as sweeping up probability. The amount of probability swept 
up is the probability of success (POS). The amount of sand 
left behind is analogous to the updated (post-search) proba
bility of containment (POC). Therefore, 

[18] POCnew = POCold – POS, 

where POCold is the POC immediately prior to the last 
search and the POS is the value obtained from the last search. 
Equation [18] is exactly mathematically equivalent to the 
better-known formula, 

[19] POCnew = (1 – POD) x POCold 

Expanding the expression on the right of the equals sign 
and substituting from Equation [14] easily proves this asser
tion. The total amount of sand swept up by all sweeping done 
to date is analogous to the total amount of probability swept 
up by all searching done to date. The latter is called the 
cumulative overall probability of success. Just as the goal in 
our floor-sweeping experiments was to sweep up sand at 
the greatest possible rate, the goal of the search planner is to 
maximize the increase in the cumulative overall probability 
of success by “sweeping up” probability the greatest possible 
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rate. To do this, the search planner needs to know the prob
able success rates (PSR) in the different regions. The prob
able success rate (PSR) is exactly analogous to the 
productive sweeping rate (psr) used above. The probable 
success rate is computed by, 

[20] PSR = (Effective Search (or Sweep) Rate) x Pden, 

where Pden is defined as the amount of probability per unit 
area in a region or, 

[21]	 Pden = POC,
A 

where A is the area of the region. We may re-write Equation 
[20] as 

[22] PSR = W x v x Pden, 

provided we are careful to remember that the effective sweep 
width, W, and search speed, v, come as together as a single 
package. (As a practical matter, small changes in v will not 
usually affect the value of W seriously.) PSR has units of 
probability (of success) per unit time. 

Artificial “Features” of the Experiments 
With the exception of the last 100 meters of effort, the 

optimal search proceeded by sweeping an entire region 
exactly once at a coverage of 0.5 before proceeding to the 
next region in the sequence. This is an artifact of our broom’s 
performance profile (B2 is uniformly 50% effective for a 
width of one meter) and our method of sweeping (straight 
parallel tracks spaced exactly one meter apart). These phys
ical features along with the dimensions of our regions meant 
that each time we started sweeping a region, we could keep 
the brooms operating at peak productivity until we had fin
ished sweeping it one (more) time. Very few SAR situations 
give rise to detection profiles that are so uniform and sharply 
defined. Almost all detection profiles are at their highest 
close to the searcher’s actual track and decline in some fash
ion as distance from the searcher’s track increases. 
Therefore, we must not jump to the conclusion that all 
searching should be done at a coverage of 0.5. In fact, we can 
quickly show the fallacy of such a premature conclusion by 
simply switching brooms. If we use broom B1, (100% effec
tive across a width of 0.5 m), the optimal spacing is 0.5 m, 
making the coverage 1.0. The optimal sweeping sequence 
becomes R4, R3, R2 and R1. In ten minutes, we will be able 
to sweep R4 once (160 sec, 4 kg), R2 once (240 sec, 4.5 kg) 
and 2.5 cells in R2 in the remaining time (200 sec, 2.5 kg) for 
a total of 11.0 kg of sand. This represents 11/15.5 or about 
71% of the sand initially present. Similarly, for broom B4 
(25% effective across a width of two meters), the optimal 
spacing is two meters, making the coverage 0.25. The opti
mal sweeping sequence becomes R4, R4 & R3, R4 & R3 
(again), R2, R4 & R3, R2, R4 & R3. The total amount of 
sand removed will be about 7.877 kg or about 50.82% of 
the amount initially present. We will not attempt to develop 
a uniformly optimal allocation for the uneven performance 

profile of broom B4 due to its computational complexity. 
However, we will observe that B4’s performance profile is 
probably much more typical of actual SAR detection profiles 
than those of the other brooms. 

Although we carefully avoided the overlapping of swaths 
during any single sweeping of a region, we should not jump 
to the conclusion that the overlapping of detection profiles 
from adjacent searcher tracks is to be avoided under all cir
cumstances. This is another artifact of our broom’s physical 
characteristics. With realistic detection profiles, some over
lap is often required to achieve a practical approximation to 
the optimal search plan. 

Alternative Strategies 
Achieving uniform optimality (Strategy 1) during a single 

operational period is hard to do as it is often impractical to 
move searchers around in the manner just described for our 
sweepers. However, we can still take advantage of the data 
we have just computed to develop a nearly optimal, but more 
practical, sweeping (search) plan. If we add up the total 
amounts of time and effort expended in each region by all 
five sweepers, we get the results shown in Table 14 below. 

Region Effort 
(m) 

Time 
(sweeper-sec) 

R1 0 0 
R2 500 1000 
R3 600 1200 
R4 400 800 
Totals 1500 3000 

Table 14 

Strategy 2: We could assign two sweepers to R3 for the 
full 10 minutes (600 seconds), allowing them to sweep R3 
exactly twice at 0.5 m/sec with their 600 meters of effort. We 
could also assign a third sweeper to R2 for the full 10 min
utes (300 meters of effort), allowing him to sweep three of 
that region’s four cells exactly once. Finally, we could assign 
the other two sweepers to R4 for 6 minutes and 40 seconds 
(400 seconds, 400 meters), allowing them to sweep it exactly 
twice. For the remaining 3 minutes and 20 seconds (200 sec
onds, 200 meters), these two sweepers would be assigned to 
the remaining unswept cell in R3 which they would be able 
to sweep exactly twice. This plan significantly reduces the 
need to move sweepers from one region to another as com
pared to the previous plan. It is also a T-optimal sweeping 
plan because it would remove the same total of 8.625 kg of 
sand in the allotted ten minutes. However, in the early stages, 
it would not remove sand as quickly as the uniformly optimal 
sweeping plan did. 

Strategy 3: If we are not required to recognize regional 
boundaries for the purpose of sweeping the floor, we can 
develop another T-optimal plan that requires no inconve
nient movements of sweepers from place to place. Going 
back to our initial “probability map,” Figure 23, we could 
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assign two sweepers to cells 13, 14 and 15, two sweepers to 
cells 8, 9 and 10, and one sweeper to cells 3, 4 and 5 for the 
full 10 minutes in each case. We could have them sweep first 
from right to left across all three of their assigned cells, then 
back and forth until their efforts were uniformly spread over 
their assigned cells. Cells 8, 9, 10, 13, 14 and 15 would all be 
swept twice while cells 3, 4 and 5 would be swept once. We 
would still get a total of 8.625 kg of sand in ten minutes and 
the sweepers’ brooms would never need to leave the floor. 

Now let us look at three other strategies that might 
have suggested themselves before we performed our exper
iments above. 

Strategy 4: One of these alternatives would be to sweep 
the regions one time each in descending order of how much 
sand each contained initially. The order of sweeping in this 
case would be R3, R4, R2 and R1, if we allow density to be 
the tiebreaker between R4 and R2. There happens to be 
exactly enough effort available to carry out this strategy. 
The end result would be removal of 7.75 kg of sand, or 50% 
of that initially present. 

Strategy 5: Another strategy that might come to mind 
would be sweeping the regions once each in descending 
order of density. The sweeping order in this case would be 
R4, R3, R2 and R1. Again, 7.75 kg of sand, or 50% of that 
initially present, would be removed. 

Strategy 6: Finally, since we have five sweepers and 
each sweeper can sweep three cells exactly once in ten min
utes, we could assign one sweeper to each “column” of three 
cells in Figure 23. 

Figure 29 graphs the results of our sweeping strategies, 
showing what percentage of the sand initially present each 
strategy sweeps up as a function of time as the sweepers pass 
back and forth over their assigned cells. 

The upper curve, labeled “S1” for “Strategy 1,” shows the 
results of applying the uniformly optimal sweeping plan. In 
our simple example, Strategy 5 is also uniformly optimal 
for the first six minutes. Strategy 4 catches up with S1 at 
three minutes, twenty seconds and manages to stay with it 
until six minutes have passed. Then both S4 and S5 become 
sub-optimal and depart sharply from the optimal curve. 
Strategies 2 and 3 do not catch up with S1 until five min
utes have passed, but then they remain very close to the uni
formly optimal curve for the remaining five minutes. 
Interestingly, the first five strategies are all T-optimal when T 
equals five minutes. Only the first three are T-optimal when 
T is ten minutes, while the other three are all sub-optimal at 
that point. Finally, the worst plan of all is clearly Strategy 6. 
Strategy 6 is the one where the available effort is spread uni
formly over the floor for the entire ten minutes and is never 
concentrated anywhere. In other words, Strategy 6, if applied 
to searching, would seek to obtain the same POD every
where at once. This is rarely the best plan. 

Again, the author must caution the reader against jumping 
to conclusions. The excellent performance of Strategy 5 in 
the early stages does not imply searching regions in descend
ing order of probability density is always a good way to start. 
In developing examples, the author has struggled mightily to 
balance the competing demands of making them simple 
enough to follow yet complex enough to reflect reality. 
It has not been easy and the author has not always been 
entirely successful. In the next paragraph, we will complicate 
matters enough to show why one should not jump to 
“obvious” conclusions. 

Figure 29 
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A More Complex Experiment 
We will now move a step closer to simulating a search 

situation with our floor sweeping analogy. Suppose we 
return to our initial problem represented by Figures 22 and 
23, and Table 8. However, suppose that one morning when 
we enter the gym to set up our experiments, we find the floor 
is being refurbished. It is no longer uniformly smooth every
where but has varying degrees of roughness. This forces us 
to perform some additional experiments, like those of Part 
I, to determine new effective sweep width and sweeping 
speed values for the new conditions. We conduct our exper
iments using broom B2 and find that although it remains uni
formly effective across its one-meter width, the level of that 
effectiveness (i.e., the effective sweep width) varies with the 
roughness of the floor. We also find that eventually the 
roughness of the floor also impacts the speed at which the 
sweepers move. The results of the experiments are shown 
in Table 15 below. 

Region Effective Sweep 
Width (m) 

Sweeping Speed 
(m/sec) 

Effective Sweep 
Rate (m2/sec) 

R1 0.5 0.50 0.25 
R2 0.4 0.50 0.20 
R3 0.3 0.40 0.12 
R4 0.2 0.25 0.05 

Table 15 

Apparently region R1 is still in its original condition for 
our purposes since neither the effective sweep width nor the 
sweeping speed have changed. In R2, the sweep width suf
fers somewhat, but not the speed. Both R3 and R4 suffer 
increasingly lowered sweep widths and speeds. Using our 
new effective sweep rate values to compute new productive 
sweeping rates for sweepers using a B2-type of broom, we 
get the results shown in Table 16. 

One thing is abundantly clear: Five sweepers will not be 
able to sweep up nearly as much sand in ten minutes as they 
did before. We also see that the productive sweeping rate val
ues no longer parallel the density values. Because we are 
using the same brooms as before (all identical to B2), we will 
still want to use parallel tracks at a spacing (S) of one meter. 
However, our effective coverage values for each region will 
now be different at this spacing thanks to the differing effec
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tive sweep widths. Using the shortcut formula for coverage 
that is valid for parallel sweeps of rectangular areas, 

[23] C = WS 
, 

where C is the coverage, W is the sweep width and S is the 
track spacing, we find we will be using coverages of 0.5 for 
R1, 0.4 for R2, 0.3 for R3 and 0.2 for R4. From Part II of 
this series, we recall that at these low coverages, the per
centage of remaining sand swept up by B2 at each sweep
ing will equal the coverage. We begin with sweeping R2 
one time. It takes 160 seconds for our five sweepers work
ing together to “cover” R2 once at 0.5 m/sec. Having done 
so, they have removed 40% of the 4 kg of sand initially pre
sent or 1.6 kg. This leaves 2.4 kg behind in R2. Table 17 
summarizes the situation following this sweeping. 

Sweeping R3 one time at the reduced speed of 0.4 m/sec 
requires 150 seconds and a total expended effort of 300 m. 
Note that while the efforts required to sweep the regions does 
not change from our previous experiments, the times 
required to expend those efforts when sweeping speeds have 
been reduced must increase accordingly. We sweep up 30% 
of the 4.5 kg of sand initially present in R2, or 1.35 kg. This 
leaves 3.15 kg behind. Table 18 summarizes the situation fol
lowing the sweeping of R3. 

With more than half of our time used up, we have swept 
up less than 3 kg of sand. Since R3 still has the highest pro
ductive sweeping rate, we sweep it again. This time, we get 
30% of the remaining 3.15 kg of sand or 0.945 kg. The 
results are summarized in Table 19. 

We have now used 460 seconds of our original 600 sec
onds (ten minutes) of sweeper availability, leaving 140 sec
onds. The next region we want to sweep is R1 since it has the 
highest psr value. At 0.5 m/sec, our five sweepers can sweep 
3.5 cells out of the six in R1, removing 50% of the sand pre
sent in the swept area. The amount of sand contained in 3.5 
cells of R1 is 3.5 x 0.5 kg/cell or 1.75 kg and 50% of this 
value is 0.875 kg. Table 20 summarizes the results after 10 
minutes of uniformly optimal sweeping. Density and psr val
ues for R1 are given for both the swept and unswept por
tions. 

Note that even with a uniformly optimal plan, we have 
managed to sweep up only 4.77/15.5 or 30.77% of the sand 
initially present. Figure 30 shows how the final “probability 
map” would look if the 3.5 cells in R1 chosen for sweeping 
were 2, 7, 12 and one-half of 11. 

REGIONAL VALUES BEFORE ANY SWEEPING 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.20 10 2.00 0 0 0 
R3 0.12 15 1.80 0 0 0 
R4 0.05 20 1.00 0 0 0 

Table 16 
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REGIONAL VALUES AFTER SWEEPING R2 ONCE 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.20 6 1.20 160 400 1.6 
R3 0.12 15 1.80 0 0 0 
R4 0.05 20 1.00 0 0 0 
Totals 160 400 1.6 

Table 17 

REGIONAL VALUES AFTER SWEEPING R2 & R3 ONCE EACH 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.20 6 1.20 160 400 1.60 
R3 0.12 10.5 1.26 150 300 1.35 
R4 0.05 20 1.00 0 0 0 
Totals 310 700 2.95 

Table 18 

REGIONAL VALUES AFTER SWEEPING R2 ONCE, R3 TWICE 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 5 1.25 0 0 0 
R2 0.20 6 1.20 160 400 1.600 
R3 0.12 7.35 0.882 300 600 2.295 
R4 0.05 20 1.00 0 0 0 
Totals 460 1000 3.895 

Table 19 

REGIONAL VALUES AFTER SWEEPING R2 & R1 ONCE EACH, R3 TWICE 

Region Effective Sweep Rate 
(m2/sec) 

Density 
(g/m2) 

Productive Sweeping Rate (psr) 
(g/sec) 

Expended To Date 
Amount of Sand Swept Up 

To Date (kg) 
Time 
(sec) 

Effort 
(m) 

R1 0.25 2.5 & 5 0.625 & 1.25 140 350 0.875 
R2 0.20 6 1.20 160 400 1.600 
R3 0.12 7.35 0.882 300 600 2.295 
R4 0.05 20 1.00 0 0 0 
Totals 600 1350 4.770 

Table 20 
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Note also that the optimal plan for this problem placed 
no effort at all in the region having the highest density (R4) 
whereas the optimal plan for the previous problem ignored 
the region with the lowest density (R1). 

Examining Alternative Strategies 
We will not take time to analyze all the different strategies 

examined above, but it will be instructive to look briefly at 
the three “obvious” alternatives; namely Strategies 4, 5 and 
6. Recall that in Strategy 4, regions are swept in order of 
decreasing percentages of containment (poc) or, equiva
lently, decreasing amounts of sand. In Strategy 5, regions are 
swept in order of decreasing densities. In Strategy 6, one 
searcher is assigned to each “column” of three cells on the 
“probability map” and sweeps those “columns’ for the entire 
ten minutes, starting at the “bottom” and moving “upward” 
on the first leg. We will not belabor the reader with the nec
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essary arithmetic. We will simply show the graph of the 
results as Figure 31. 

Figure 31 makes it quite clear that none of the more sim
plistic strategies work very well for the more complex prob
lem we have just examined. This time, sweeping the regions 
in descending order of density (Strategy S5) was the worst 
thing to do in the early stages. However, the results of 
Strategy S6 are similar to those of the previous experiments 
in that apportioning the resources, i. e. the sweepers, evenly 
over the entire area again turned out to be the worst strategy 
at the end of ten minutes time. Note that a uniform distribu
tion of resources over the floor’s area does not produce a uni
form distribution of effort this time, nor does it cause a 
uniform percentage of dirt (pod) to be swept up everywhere. 
In fact, Strategy S6 has left some portions of the floor 
unswept this time because three of our five sweepers could 
not complete their assigned “columns” of three cells each in 
the allotted time due to the speed reductions in regions R3 
and R4. 

Assessing the Costs of Sub-Optimal Planning 
One may think that the maximum difference between the 

optimal pos value of 19% (2.95 kg of sand) and the 14% 
(2.15 kg) or 15% (2.32 kg) of the other strategies at 5 min
utes, 10 seconds in Figure 31 is small. However, the per
spective changes when one considers the additional time 
and/or effort required to obtain the optimal pos values. For 
example, it will take the same five sweepers 6 minutes, 30 
seconds to reach the 19% mark based on the next best strat
egy of the three alternatives considered. That’s nearly 26% 
more time to get the same result. In a SAR mission, adding 
that much time to reach an early POS goal could be serious. 
Alternatively, shaving 20% or so off the time required to 
achieve a 19% cumulative probability of success by making 

Figure 31 
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more efficient use of the available resources could contribute 
substantially to increasing the number of successful mis
sions. Another way to view the issue is to consider how 
much more effort would be required to achieve the optimal 
result when using sub-optimal strategies. We would have to 
increase our available effort by about 26%. Roughly speak
ing, this means we need 26% more sweeper-minutes to make 
the sub-optimal strategies produce results as good as the uni
formly optimal plan in the first 5 minutes. That is a substan
tial increase. (Of course, if we had the additional effort, we 
would want to set a new optimal POS target.) The point is 
that we can pay a significant price when search plans are 
sub-optimal. 

The Charnes-Cooper Algorithm 
One feature of both the above optimal effort allocation 

problems is particularly worth noting. As optimal sweeping 
progressed, the productive sweeping rates tended to become 
more and more nearly the same everywhere as sand was 
removed. In fact, an optimal effort allocation strategy does 
seek to “level the playing field,” as it were. In other words, 
the general idea is to search the region with the highest prob
able success rate (PSR) until enough probability is swept 
up to make the PSR there equal to the second highest PSR 
in the list. Then both regions are searched together so their 
PSR values are kept equal to one another as they decrease at 
the same rate to the PSR value of the third highest value in 
the list. This process continues until as many regional PSR 
values as possible are the same. Any remaining effort is then 
spread over these regions in a fashion that keeps the PSR val
ues equal to one another as they all decrease together toward 
the next level. Note that the distribution of effort required to 
keep PSR values dropping at equal rates everywhere is not 
uniform. We must still compute an appropriate coverage and 
corresponding level of effort for each region using the W, v, 
and Pden values appropriate to that region and the resources 
available to search it. 

Note: In the examples given above, physical constraints 
and the method of sweeping i.e., using brooms one meter in 
width moving along perfectly straight, parallel tracks one 
meter apart, forced us to push psr values down below the 
next highest value before moving on to the next region. We 
could not move on until completing the current region 
because if we did, we would leave some portion of the cur
rent region behind that still had high psr and move to an area 
with a lower psr. Again, the need to use simple, easy-to-visu
alize examples prevents us from having an exact analogy 
with the mathematical principles involved. 

In 1958, A. Charnes and W. W. Cooper developed an 
algorithm for computing the optimal distribution of effort for 
situations where the probability density distribution was 
known and the exponential detection function applied. Stone 
[6] describes an adaptation of this algorithm in some detail. 
Conceptually, the algorithm works as described above, i.e., it 
“levels the playing field” in terms of probable success rate. 
However, there is a good deal of mathematical detail needed 
to make the concept work. That detail involves every equa
tion presented in this series of articles as well as others. The 
algorithm is really practical only if a computer is available on 

which it may be programmed and run. The good news is 
that the algorithm is not too difficult to program and it is very 
efficient. The bad news is that it computes what is known as 
an unconstrained optimization. It makes no allowances for 
the real-world limitations on how resources may be 
deployed. If the algorithm computes that the effort repre
sented by one searcher searching for one hour is needed in an 
area of 160 acres, then it will assume, for computational 
purposes, that the searcher can somehow uniformly “search” 
the entire 160 acres in that hour, albeit with a very low cov
erage and POD. There are other assumptions that are equally 
unrealistic. However, if the algorithm’s intermediate iterative 
workings are not taken too literally, its final results can be 
quite useful in a practical sense. The algorithm can even be 
modified to accept “effort” defined in the more commonly 
used terms of searcher- or resource-hours instead of the clas
sical search theory definition using distance. If the algo
rithm is run for the total amount of available “effort” (and the 
sweep widths, search speeds, probabilities of containment, 
areas, etc., have been entered for all the regions) the search 
planner can see how much of that “effort” (e.g., how many 
searcher-hours) were accumulated in each region. The 
results of such computations will provide a very useful guide 
to the search planner regarding where he should place the 
available resources during the next search cycle. In other 
words, the output of the Charnes-Cooper algorithm may be 
used in the same way we used the final values in Table 14 
to develop alternative Strategies 2 and 3 for our first set of 
experiments. 

Lessons 
We have covered a great deal of ground in these articles. 

Some of the things we have learned along the way are: 

•	 The goal of search planning is to maximize the cumula
tive overall probability of success and minimize the time 
required to achieve it within the constraints of the avail
able resources. 

• The probability of detection (POD) is an estimate of the 
chances that the object of the search would have been 
detected if it had been in the searched area during the 
search. 

•	 The concept of effective search (or sweep) width as a quan
titative measure of “detectability” is the key to objective, 
reliable and consistent POD estimates. Without this con
cept and supporting data from rigorous scientific field 
experiments, POD estimates must necessarily be regarded 
as highly subjective “guess-timates.” 

•	 The concept of effective search (or sweep) width lies at the 
very core of search theory and is the key to planning effec
tive, efficient searches of areas and evaluating search 
results. 

•	 In search theory, effort is defined as the distance a searcher 
travels while searching within a defined area. 

•	 The concept of effective coverage relates the effective 
sweep width and the amount of effort expended in an area 
to the size of that area. 
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Figure 32 

•	 POD is a function of coverage, as depicted in Figure 32. 
The graph shown there is that of the exponential detection 
function for coverages ranging from zero to 3.0. 

•	 There is no theoretical basis for the claim that two succes
sive low-coverage (i.e., low POD) searches of a region will 
produce a higher cumulative POD for the same effort as a 
single higher-coverage (i.e. higher POD) search would. 
In fact, search theory suggests the opposite effect is far 
more likely. 

•	 The probability that a region, segment, or other geographi
cally defined area contains the search object is called the 
probability of containment (POC) or, equivalently, the 
probability of area (POA). 

•	 Initial POC values are estimated subjectively by scenario 
analysis and consensus. For a particular scenario, POC val
ues for sub-divisions of the possibility area may be esti
mated directly or by assignment of proportional assessment 
values that are then normalized to produce probabilities of 
containment. However, simplistic schemes that only assign 
ranks and thus do not keep the values in the correct pro
portions to one another can lead to POCs that are inconsis
tent with the evaluators’ assessments of the available 
information. Such schemes should be avoided. 

•	 When multiple scenarios are under consideration, they may 
be assigned different “weights” to reflect their relative like
lihoods of representing the true situation. 

•	 The probability density (Pden) of a region, segment, or 
other geographically defined area is the ratio of its current 
POC to its area. 

• A probability map is a regular grid of cells where each cell 
is labeled with the amount of probability it contains. A 
probability map is constructed by laying a regular grid over 
a map labeled with the results of the scenario analysis and 
consensus processes. POC values for the cells are then 
computed from the regional POC and Pden values estab
lished by scenario analysis and consensus. A cell’s POC is 
based on the product of its area and the probability density 
of the region it lies within. If the cell spans more than one 
region, then the areas of the fractions of the cell lying in 
each region are multiplied by the respective regional den
sities and the results added together to get the cell’s POC. 
Because all cells are the same size, the Pdens of the cells 
are proportional to their POCs. Therefore, a probability 
map shows at a glance both the containment probabilities 
and where the probability densities are high and where they 
are low. The probability map is a representation of the 
search object’s location probability density distribution. 

•	 Developing scenarios and their corresponding probability 
density distributions, or probability maps, from evidence, 
clues, behavior profiles, historical records, and any other 
available information is not a simple task. Scenario analy
sis is an essential part of the search planning process 
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deserving more dedicated time, resources and attention 
than it generally gets. 

•	 The probability that a search of a region, segment, or other 
geographically defined area will, or should, locate the 
search object is called the probability of success (POS). 
POS is a function of POD and POC—in fact, it is the prod
uct of the two. 

•	 Searching an area is tantamount to “sweeping up” or 
“removing” probability from it. The amount removed is the 
POS while the amount remaining is the new post-search 
POC. The POD of the search determines both values. 

•	 The cumulative overall probability of success is the sum 
of all individual POS values achieved to date. It measures 
the chances of having found the search object if it was any
where within the possibility areas of the scenarios under 
consideration. Achieving a high cumulative overall POS 
value without locating the search object is an indication that 
further searching based on the scenarios currently under 
consideration is unlikely to be successful. It is also an indi
cation that a thorough re-evaluation of all available data and 
information is needed to determine whether key facts have 
been overlooked, whether other plausible scenarios exist, 
etc. 

•	 The probable success rate (PSR) for a region, segment, or 
other geographically defined area is an estimate of the rate 
at which POS can be increased by searching there. PSR is 
the product of the effective sweep width, the corresponding 
search speed, and the area’s probability density (Pden). 

•	 The optimal allocation of search resources is not a simple 
task—in theory nor in practice. Simplistic guidelines about 
placing most of the resources where the probability of con
tainment is highest, or where the probability density is high
est, are unreliable. 

•	 In the most basic terms, the idea behind optimal effort allo
cation is to put search resources into the region(s) where 
probability can be swept up most quickly, moving them to 
other regions when and as necessary to ensure they are 
always searching where they can be the most productive. 

•	 For large-scale searches involving significant amounts of 
area and requiring more than a few hours to resolve 
successfully, search theory, properly applied, can substan
tially improve success rates in most jurisdictions. 

A Final Word 
In these articles, we have not developed a practical search 

planning methodology based on search theory nor was it our 
intent to do so. However, perhaps we have at least raised the 
reader’s awareness of the potential benefits that development 

of such a methodology would bring to SAR missions. A 
project to produce a set of scientifically valid yet practical 
search planning procedures would require a development 
team whose collective talents and knowledge covered the 
entire spectrum from the most mathematically esoteric 
aspects of search theory to the most practical aspects of plan
ning and conducting search operations. Such an undertak
ing would also require significant amounts of time and 
resources. Tasks would include: 

•	 Designing, developing and conducting sweep width exper
iments in inland environments. 

•	 Testing and evaluating different search tactics. 

•	 Integrating material and knowledge from many diverse 
areas of expertise into a clear, concise, coherent, practical, 
and scientifically valid set of guidelines for planning 
searches. 

However, it is to be hoped that we have provided a rarely-
seen scientific perspective on the nature of searching that 
will help search planners think about and approach search 
problems in new and improved ways even before these tasks 
can begin. 
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